Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis

Abstract

Results of transcriptome analyses suggest that expansin genes play an active role in seed development and yield, but gain- or loss-of-function studies have not yet elucidated the functional role(s) of the expansin gene(s) in these processes. We have overexpressed a sweetpotato expansin gene (IbEXP1) in Arabidopsis under the control of cauliflower mosaic 35S promoter in an attempt to determine the effect of the expansin gene in seed development and yield in heterologous plants. The growth rate was enhanced in IbEXP1-overexpressing (ox) plants relative to wild-type Col-0 plants during early vegetative growth stage. At the reproductive stage, the number of rosette leaves was higher in IbEXP1-ox plants than that in Col-0 plants, and siliques were thicker. IbEXP1-ox plants produced larger seeds, accumulated more protein and starch in each seed, and produced more inflorescence stems and siliques than Col-0 plants, leading to a 2.1–2.5-fold increase in total seed yield per plant. The transcript level of IbEXP1 was up-regulated in response to brassinosteroid (BR) treatment in sweetpotato, and the transcript levels of three BR-responsive genes, fatty acid elongase 3-ketoacyl-CoA synthase 1, HAIKU1 and MINISEED3, were also increased in IbEXP1-ox Arabidopsis plants, suggesting a possible involvement of IbEXP1 in at least one of the BR signaling pathways. Based on these results, we suggest that overexpression of IbEXP1 gene in heterologous plants is effective in increasing seed size and number and, consequently, seed yield.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    CAS  PubMed  Article  Google Scholar 

  2. Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Cho HT, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:9783–9788

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    CAS  PubMed  Article  Google Scholar 

  5. Choi D, Lee Y, Cho HT, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Article  Google Scholar 

  7. Coll-Garcia D, Mazuch J, Altmann T, Müssig C (2004) EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett 563:82–86

    CAS  PubMed  Article  Google Scholar 

  8. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    CAS  PubMed  Article  Google Scholar 

  9. Dai F, Zhang C, Jiang X, Kang M, Yin X, Lü P, Zhang X, Zheng Y, Gao J (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    CAS  Article  Google Scholar 

  11. Fu J, Thiemann A, Schrag TA, Melchinger AE, Scholten S, Frisch M (2010) Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome. BMC Plant Biol 10:63

    PubMed Central  PubMed  Article  Google Scholar 

  12. Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824–5829

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Green PB (1997) Expansin and morphology: a role for biophysics. Trends Plant Sci 2:365–366

    Article  Google Scholar 

  15. Guo W, Zhao J, Li X, Qin L, Yan X, Liao H (2011) A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552

    CAS  PubMed  Article  Google Scholar 

  16. Han YY, Li AX, Li F, Zhao MR, Wang W (2012) Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Biochem 54:49–58

    CAS  PubMed  Article  Google Scholar 

  17. Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162:1965–1977

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Kwon YR, Lee HJ, Kim KH, Hong SW, Lee SJ, Lee H (2008) Ectopic expression of Expansin3 or Expansinβ1 causes enhanced hormone and salt stress sensitivity in Arabidopsis. Biotechnol Lett 30:1281–1288

    CAS  PubMed  Article  Google Scholar 

  19. Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    CAS  PubMed  Article  Google Scholar 

  20. Lee DK, Ahn JH, Song SK, Choi YD, Lee JS (2003) Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131:985–997

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    CAS  PubMed  Article  Google Scholar 

  22. Li F, Asami T, Wu X, Tsang EW, Cutler AJ (2007) A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol 145:87–97

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Li F, Xing S, Guo Q, Zhao M, Zhang J, Gao Q, Wang G, Wang W (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J Plant Physiol 168:960–966

    CAS  PubMed  Article  Google Scholar 

  24. Lin C, Choi HS, Cho HT (2011) Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells 31:393–397

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Lizana XC, Riegel R, Gomez LD, Herrera J, Isla A, McQueen-Mason SJ, Calderini DF (2010) Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). J Exp Bot 61:1147–1157

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. McQueen-Mason S, Cosgrove D (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100

    CAS  PubMed Central  PubMed  Google Scholar 

  28. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Müssig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129:1241–1251

    PubMed Central  PubMed  Article  Google Scholar 

  30. Noh SA, Park SH, Huh GH, Paek K-H, Shin JS, Bae JM (2009) Growth retardation and differential regulation of expansin genes in chilling-stressed sweetpotato. Plant Biotechnol Rep 3:75–85

    Article  Google Scholar 

  31. Noh SA, Lee HS, Huh EJ, Huh GH, Paek KH, Shin JS, Bae JM (2010) SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). J Exp Bot 61:1337–1349

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Noh SA, Lee HS, Kim YS, Paek KH, Shin JS, Bae JM (2013) Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato. J Exp Bot 64:129–142

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Park CH, Kim TW, Son SH, Hwang JY, Lee SC, Chang SC, Kim SH, Kim SW, Kim SK (2010) Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71:380–387

    CAS  PubMed  Article  Google Scholar 

  35. Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471–483

    CAS  PubMed  Article  Google Scholar 

  37. Schipper O, Schaefer D, Reski R, Flemin A (2002) Expansins in the bryophyte Physcomitrella patens. Plant Mol Biol 50:789–802

    CAS  PubMed  Article  Google Scholar 

  38. Van Daele I, Gonzalez N, Vercauteren I, de Smet L, Inzé D, Roldán-Ruiz I, Vuylsteke M (2012) A comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics. Plant Biotechnol J 10:488–500

    PubMed  Article  Google Scholar 

  39. Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    CAS  PubMed  Article  Google Scholar 

  40. Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Luo M (2010) The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J 63:670–679

    CAS  PubMed  Article  Google Scholar 

  41. Wang G, Gao Y, Wang J, Yang L, Song R, Li X, Shi J (2011) Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J 9:486–502

    CAS  PubMed  Article  Google Scholar 

  42. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    CAS  PubMed  Article  Google Scholar 

  43. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. You MK, Hur CG, Ahn YS, Suh MC, Jeong BC, Shin JS, Bae JM (2003) Identification of genes possibly related to storage root induction in sweetpotato. FEBS Lett 536:101–105

    CAS  PubMed  Article  Google Scholar 

  45. Zenoni S, Reale L, Tornielli GB, Lanfaloni L, Porceddu A, Ferrarini A, Moretti C, Zamboni A, Speghini A, Ferranti F, Pezzotti M (2004) Downregulation of the Petunia hybrida α-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell 16:295–308

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Zenoni S, Fasoli M, Tornielli GB, Dal Santo S, Sanson A, de Groot P, Sordo S, Citterio S, Monti F, Pezzotti M (2011) Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida. New Phytol 191:662–677

    CAS  PubMed  Article  Google Scholar 

  47. Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M (2009) SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21:106–117

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development” (Next-Generation BioGreen 21 Program No. PJ00810302 and No. PJ00807603), Rural Development Administration, Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jung Myung Bae.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3590 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bae, J.M., Kwak, M.S., Noh, S.A. et al. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res 23, 657–667 (2014). https://doi.org/10.1007/s11248-014-9804-1

Download citation

Keywords

  • Expansin
  • Seed yield
  • Arabidopsis
  • Brassinosteroid