Advertisement

Transgenic Research

, Volume 23, Issue 2, pp 317–329 | Cite as

A novel mouse model for Down syndrome that harbor a single copy of human artificial chromosome (HAC) carrying a limited number of genes from human chromosome 21

  • Kenichi Miyamoto
  • Nobutaka Suzuki
  • Kosuke Sakai
  • Shuichi Asakawa
  • Tsuneko Okazaki
  • Jun Kudoh
  • Masashi Ikeno
  • Nobuyoshi Shimizu
Original Paper

Abstract

Down syndrome (DS), also known as Trisomy 21, is the most common chromosome aneuploidy in live-born children and displays a complicated symptom. To date, several kinds of mouse models have been generated to understand the molecular pathology of DS, yet the gene dosage effects and gene(s)-phenotype(s) correlation are not well understood. In this study, we established a novel method to generate a partial trisomy mice using the mouse ES cells that harbor a single copy of human artificial chromosome (HAC), into which a small human DNA segment containing human chromosome 21 genes cloned in a bacterial artificial chromosome (BAC) was recombined. The produced mice were found to maintain the HAC carrying human genes as a mini-chromosome, hence termed as a Trans-Mini-Chromosomal (TMC) mouse, and HAC was transmitted for more than twenty generations independent from endogenous mouse chromosomes. The three human transgenes including cystathionine β-synthase, U2 auxiliary factor and crystalline alpha A were expressed in several mouse tissues with various expression levels relative to mouse endogenous genes. The novel system is applicable to any of human and/or mouse BAC clones. Thus, the TMC mouse carrying a HAC with a limited number of genes would provide a novel tool for studying gene dosage effects involved in the DS molecular pathogenesis and the gene(s)-phenotype(s) correlation.

Keywords

Down syndrome Trans-mini-chromosomal mouse Human artificial chromosome Bacterial artificial chromosome Gene dosage effects 

Abbreviations

DS

Down syndrome

HAC

Human artificial chromosome

BAC

Bacterial artificial chromosome

TMC mouse

Trans-mini-chromosomal mouse

CBS

Cystathionine β-synthase

U2AF1

U2 auxiliary factor

CRYAA

Crystalline alpha A

FISH

Fluorescence in situ hybridization

ES cell

Embryonic stem cell

qPCR

Quantitative polymerase chain reaction

RT-PCR

Reverse transcription polymerase chain reaction

Notes

Acknowledgments

We thank Mr. Masahiko Maekawa (GSP laboratory Inc., Kawasaki, Japan) for the technical support of FISH. This work was supported by Grants-in-Aid for Scientific Research (B) (Grant Number 16390307), (A) (Grant Number 19209038), Young Scientists (B) (Grant Number 23791194) and Global COE program for Education and Research Centre for Human Metabolomic Systems Biology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Supplementary material

11248_2013_9772_MOESM1_ESM.pptx (238 kb)
Supplementary material 1 (PPTX 238 kb)

References

  1. Ait Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, Rossier J, Personnaz L, Creau N, Blehaut H, Robin S, Delabar J, Potier M (2007) Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 81:475–491PubMedCentralPubMedCrossRefGoogle Scholar
  2. Antonarakis SE, Adelsberger PA, Petersen MB, Binkert F, Schinzel A (1990) Analysis of DNA polymorphisms suggests that most de novo dup (21q) chromosomes in patients with Down syndrome are isochromosomes and not translocations. Am J Hum Genet 47:968–972PubMedCentralPubMedGoogle Scholar
  3. Asakawa S, Abe I, Kudoh Y, Kishi N, Wang Y, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N (1997) Human BAC library: construction and rapid screening. Gene 191:69–79PubMedCrossRefGoogle Scholar
  4. Butler C, Knox A, Bowersox J, Forbes S, Patterson D (2006) The production of transgenic mice expressing human cystathionine beta-synthase to study Down syndrome. Behav Genet 36:429–438PubMedCrossRefGoogle Scholar
  5. Chadefaux B, Rethore M, Raoul O, Ceballos I, Poissonnier M, Gilgenkranz S, Allard D (1985) Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem Biophys Res Commun 128:40–44PubMedCrossRefGoogle Scholar
  6. Chasse J, Paly E, Paris D, Paul V, Sinet P, Kamoun P, London J (1995) Genomic organization of the human cystathionine beta-synthase gene: evidence for various cDNAs. Biochem Biophys Res Commun 211:826–832PubMedCrossRefGoogle Scholar
  7. Chasse J, Paul V, Escanez R, Kamoun P, London J (1997) Human cystathionine beta-synthase: gene organization and expression of different 5′ alternative splicing. Mamm Genome 8:917–921PubMedCrossRefGoogle Scholar
  8. De Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the α-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 22:151–162PubMedCrossRefGoogle Scholar
  9. Eakin G, Hadjantonakis A (2006) Production of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Nat Protoc 1:1145–1153PubMedCentralPubMedCrossRefGoogle Scholar
  10. Finkelstein J (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44PubMedCrossRefGoogle Scholar
  11. Ge Y, Konrad M, Matherly L, Taub J (2001a) Transcriptional regulation of the human cystathionine beta-synthase -1b basal promoter: synergistic transactivation by transcription factors NF-Y and Sp1/Sp3. Biochem J 357:97–105PubMedCentralPubMedCrossRefGoogle Scholar
  12. Ge Y, Matherly L, Taub J (2001b) Transcriptional regulation of cell-specific expression of the human cystathionine beta -synthase gene by differential binding of Sp1/Sp3 to the -1b promoter. J Biol Chem 276:43570–43579PubMedCrossRefGoogle Scholar
  13. Ge Y, Jensen T, Matherly L, Taub J (2002) Synergistic regulation of human cystathionine-beta-synthase-1b promoter by transcription factors NF-YA isoforms and Sp1. Biochim Biophys Acta 1579:73–80PubMedCrossRefGoogle Scholar
  14. Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88:173–189PubMedCrossRefGoogle Scholar
  15. Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505PubMedCentralPubMedCrossRefGoogle Scholar
  16. Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453PubMedCentralPubMedCrossRefGoogle Scholar
  17. Horwitz J (2000) The function of alpha-crystallin in vision. Semin Cell Dev Biol 11(1):53–60PubMedCrossRefGoogle Scholar
  18. Ichinohe A, Kanaumi T, Takashima S, Enokido Y, Nagai Y, Kimura H (2005) Cystathionine beta-synthase is enriched in the brains of Down’s patients. Biochem Biophys Res Commun 338:1547–1550PubMedCrossRefGoogle Scholar
  19. Ikeno M, Masumoto H, Okazaki T (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. Hum Mol Genet 3:1245–1257PubMedCrossRefGoogle Scholar
  20. Ikeno M, Suzuki N, Hasegawa Y, Okazaki T (2009) Manipulating transgenes using a chromosome vector. Nucleic Acids Res 37:e44PubMedCentralPubMedCrossRefGoogle Scholar
  21. Iwaki T, Kume-Iwaki A, Goldman JE (1990) Cellular distribution of alpha B-crystallin in non-lenticular tissues. J Histochem Cytochem 38:31–39PubMedCrossRefGoogle Scholar
  22. Jiang J, Jing Y, Cost G, Chiang J, Kolpa H, Cotton A, Carone D, Carone B, Shivak D, Guschin D, Pearl J, Rebar E, Byron M, Gregory P, Brown C, Urnov F, Hall L, Lawrence J (2013) Translating dosage compensation to trisomy 21. Nature 500:296–300PubMedCrossRefGoogle Scholar
  23. Korbel J, Tirosh-Wagner T, Urban A, Chen X, Kasowski M, Dai L, Grubert F, Erdman C, Gao M, Lange K, Sobel E, Barlow G, Aylsworth A, Carpenter N, Clark R, Cohen M, Doran E, Falik-Zaccai T, Lewin S, Lott I, Mcgillivray B, Moeschler J, Pettenati M, Pueschel S, Rao K, Shaffer L, Shohat M, Van Riper AJ, Warburton D, Weissman S, Gerstein M, Snyder M, Korenberg J (2009) The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA 106:12031–12036PubMedCentralPubMedCrossRefGoogle Scholar
  24. Li L, He S, Sun J, Davie J (2004) Gene regulation by Sp1 and Sp3. Biochem Cell Biol 82:460–471PubMedCrossRefGoogle Scholar
  25. Li Z, Yu T, Morishima M, Pao A, Laduca J, Conroy J, Nowak N, Matsui S, Shiraishi I, Yu Y (2007) Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet 16:1359–1366PubMedCrossRefGoogle Scholar
  26. Long J, Caceres J (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417:15–27PubMedCrossRefGoogle Scholar
  27. Lyle R, Bena F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L, Doco-Fenzy M, Cornillet-Lefebvre P, Pelet A, Lyonnet S, Toutain A, Colleaux L, Horst J, Kennerknecht I, Wakamatsu N, Descartes M, Franklin J, Florentin-Arar L, Kitsiou S, Ait Yahya-Graison E, Costantine M, Sinet P, Delabar J, Antonarakis S (2009) Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 17:454–466PubMedCentralPubMedCrossRefGoogle Scholar
  28. Maclean K, Kraus E, Kraus J (2004) The dominant role of Sp1 in regulating the cystathionine beta-synthase-1a and -1b promoters facilitates potential tissue-specific regulation by Kruppel-like factors. J Biol Chem 279:8558–8566PubMedCrossRefGoogle Scholar
  29. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington M, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan J, Sharpe P, Brandner S, Bliss T, Henderson D, Nizetic D, Tybulewicz V, Fisher E (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309:2033–2037PubMedCentralPubMedCrossRefGoogle Scholar
  30. Papavassiliou P, York TP, Gursoy N, Hill G, Nicely LV, Sundaram U, Mcclain A, Aggen SH, Eaves L, Riley B, Jackson-Cook C (2009) The phenotype of persons having mosaicism for trisomy 21/Down syndrome reflects the percentage of trisomic cells present in different tissues. Am J Med Genet A 149:573–583CrossRefGoogle Scholar
  31. Pereira P, Magnol L, Sahun I, Brault V, Duchon A, Prandini P, Gruart A, Bizot J, Chadefaux-Vekemans B, Deutsch S, Trovero F, Delgado-Garcia JM, Antonarakis S, Dierssen M, Herault Y (2009) A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum Mol Genet 18:4756–4769PubMedCentralPubMedCrossRefGoogle Scholar
  32. Petersen M, Adelsberger P, Schinzel A, Binkert F, Hinkel G, Antonarakis S (1991) Down syndrome due to de novo Robertsonian translocation t (14q; 21q): DNA polymorphism analysis suggests that the origin of the extra 21q is maternal. Am J Hum Genet 49:529–536PubMedCentralPubMedGoogle Scholar
  33. Pogribna M, Melnyk S, Pogribny I, Chango A, Yi P, James S (2001) Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am J Hum Genet 69:88–95PubMedCentralPubMedCrossRefGoogle Scholar
  34. Reeves R, Irving N, Moran T, Wohn A, Kitt C, Sisodia S, Schmidt C, Bronson R, Davisson M (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184PubMedCrossRefGoogle Scholar
  35. Regnier V, Billard J, Gupta S, Potier B, Woerner S, Paly E, Ledru A, David S, Luilier S, Bizot J, Vacano G, Kraus J, Patterson D, Kruger W, Delabar J, London J (2012) Brain phenotype of transgenic mice overexpressing cystathionine beta-synthase. PLoS ONE 7:e29056PubMedCentralPubMedCrossRefGoogle Scholar
  36. Roizen N, Mets M, Blondis T (1994) Ophthalmic disorders in children with Down syndrome. Dev Med Child Neurol 36:594–600PubMedCrossRefGoogle Scholar
  37. Sago H, Carlson E, Smith D, Kilbridge J, Rubin E, Mobley W, Epstein C, Huang T (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA 95:6256–6261PubMedCentralPubMedCrossRefGoogle Scholar
  38. Shinohara T, Tomizuka K, Miyabara S, Takehara S, Kazuki Y, Inoue J, Katoh M, Nakane H, Iino A, Ohguma A, Ikegami S, Inokuchi K, Ishida I, Reeves R, Oshimura M (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Hum Mol Genet 10:1163–1175PubMedCrossRefGoogle Scholar
  39. Steingass K, Chicoine B, Mcguire D, Roizen N (2011) Developmental disabilities grown up: Down syndrome. J Dev Behav Pediatr 32:548–558PubMedCrossRefGoogle Scholar
  40. Suzuki N, Nishii K, Okazaki T, Ikeno M (2006) Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Biol Chem 281:26615–26623PubMedCrossRefGoogle Scholar
  41. Suzuki N, Itou T, Hasegawa Y, Okazaki T, Ikeno M (2010) Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic Acids Res 38:e33PubMedCentralPubMedCrossRefGoogle Scholar
  42. Wilson M, Barbosa-Morais NL, Schmidt D, Conboy C, Vanes L, Tybulewicz V, Fisher E, Tavare S, Odom D (2008) Species-specific transcription in mice carrying human chromosome 21. Science 322:434–438PubMedCentralPubMedCrossRefGoogle Scholar
  43. Yu T, Li Z, Jia Z, Clapcote S, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard A, Spring S, Henkelman R, Stoica G, Matsui S, Nowak N, Roder J, Chen C, Bradley A, Yu Y (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 19:2780–2791PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kenichi Miyamoto
    • 1
  • Nobutaka Suzuki
    • 2
  • Kosuke Sakai
    • 1
  • Shuichi Asakawa
    • 3
  • Tsuneko Okazaki
    • 2
  • Jun Kudoh
    • 1
  • Masashi Ikeno
    • 1
    • 2
  • Nobuyoshi Shimizu
    • 4
  1. 1.Laboratory of Gene MedicineKeio University School of MedicineTokyoJapan
  2. 2.Chromo Research Inc.NagoyaJapan
  3. 3.Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
  4. 4.Advanced Research Center for Genome Super PowerKeio UniversityTsukubaJapan

Personalised recommendations