Advertisement

Transgenic Research

, Volume 23, Issue 2, pp 351–363 | Cite as

A study on the influence of different promoter and 5′UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton

  • Parul Agarwal
  • Varsha Garg
  • Taru Gautam
  • Beena Pillai
  • Shaveta Kanoria
  • Pradeep Kumar BurmaEmail author
Original Paper

Abstract

Several reports of promoters from plants, viral and artificial origin that confer high constitutive expression are known. Among these the CaMV 35S promoter is used extensively for transgene expression in plants. We identified candidate promoters from Arabidopsis based on their transcript levels (meta-analysis of available microarray control datasets) to test their activity in comparison to the CaMV 35S promoter. A set of 11 candidate genes were identified which showed high transcript levels in the aerial tissue (i.e. leaf, shoot, flower and stem). In the initial part of the study binary vectors were developed wherein the promoter and 5′UTR region of these candidate genes (Upstream Regulatory Module, URM) were cloned upstream to the reporter gene β glucuronidase (gus). The promoter strengths were tested in transformed callus of Nicotiana tabacum and Gossypium hirsutum. On the basis of the results obtained from the callus, the influence of the URM cassettes on transgene expression was tested in transgenic tobacco. The URM regions of the genes encoding a subunit of photosystem I (PHOTO) and geranyl geranyl reductase (GGR) in A. thaliana genome showed significantly high levels of GUS activity in comparison to the CaMV 35S promoter. Further, when the 5′UTRs of both the genes were placed downstream to the CaMV 35S promoter it led to a substantial increase in GUS activity in transgenic tobacco lines and cotton callus. The enhancement observed was even higher to that observed with the viral leader sequences like Ω and AMV, known translational enhancers. Our results indicate that the two URM cassettes or the 5′UTR regions of PHOTO and GGR when placed downstream to the CaMV 35S promoter can be used to drive high levels of transgene expression in dicotyledons.

Keywords

5′UTR Transgene expression CaMV 35S Cotton Tobacco Upstream regulatory module URM Leader sequences 

Notes

Acknowledgments

The work was supported by grant in aids from University Grants Commission, India under their Special Assistance Program and from the University of Delhi. PA and SK was supported by a fellowship from Council for Scientific and Industrial Research.

Supplementary material

11248_2013_9757_MOESM1_ESM.tif (410 kb)
Supplementary material 1 (TIFF 410 kb)
11248_2013_9757_MOESM2_ESM.tif (470 kb)
Supplementary material 2 (TIFF 470 kb)
11248_2013_9757_MOESM3_ESM.doc (46 kb)
Supplementary material 3 (DOC 46 kb)
11248_2013_9757_MOESM4_ESM.docx (23 kb)
Supplementary material 4 (DOCX 22 kb)
11248_2013_9757_MOESM5_ESM.docx (16 kb)
Supplementary material 5 (DOCX 16 kb)
11248_2013_9757_MOESM6_ESM.docx (16 kb)
Supplementary material 6 (DOCX 15 kb)

References

  1. Agarwal S, Jha S, Sanyal I, Amla DV (2009) Effect of point mutations in translation initiation context on the expression of recombinant human α1-proteinase inhibitor in transgenic tomato plants. Plant Cell Rep 28:1791–1798. doi: 10.1007/s00299-009-0779-y PubMedCrossRefGoogle Scholar
  2. Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9(6):1677–1684PubMedCentralPubMedGoogle Scholar
  3. Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132:988–998 doi:  10.1104/pp.103.020602 Google Scholar
  4. Bhullar S, Chakravarthy S, Pental D, Burma PK (2009) Analysis of promoter activity in transgenic plants by normalizing expression with a reference gene: anomalies due to the influence of the test promoter on the reference promoter. J Biosci 34:953–962PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5:73–81PubMedCentralPubMedCrossRefGoogle Scholar
  7. Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15:373–381PubMedCrossRefGoogle Scholar
  8. Dansako T, Kato K, Satoh J, Sekine M, Yoshida K, Shinmyo A (2003) 5′ Untranslated region of the HSP18.2 gene contributes to efficient translation in plant cells. J Biosci Bioeng 95:52–58PubMedGoogle Scholar
  9. Datla RSS, Bekkaoui F, Hammerlindl JK, Pilate G, Dunstan DI, Crosby WL (1993) Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci 94:139–149CrossRefGoogle Scholar
  10. De Almeida ERP, Gossele V, Muller CG, Dockx J, Reynaerts A, Botterman J, Krebbers E, Timko MP (1989) Transgenic expression of two marker genes under the control of an Arabidopsis rbcS promoter: sequences encoding the Rubisco transit peptide increase expression levels. Mol Gen Genet 218:78–86CrossRefGoogle Scholar
  11. Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435. doi: 10.1016/j.biotechadv.2010.01.005 PubMedCrossRefGoogle Scholar
  12. Dey N, Maiti I (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782PubMedCrossRefGoogle Scholar
  13. Gallie DR (1993) Posttranscriptional regulation of gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 44:77–105CrossRefGoogle Scholar
  14. Gallie DR (1996) Translational control of cellular and viral mRNAs. Plant Mol Biol 32:145–158PubMedCrossRefGoogle Scholar
  15. Gallie D, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res 20(17):4631–4638PubMedCentralPubMedCrossRefGoogle Scholar
  16. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 15:3257–3273PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gehrke L, Auron PE, Quigley GJ, Rich A, Sonenberg N (1983) 5′-Conformation of capped alfalfa mosaic virus ribonucleic acid may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 22:5157–5164PubMedCrossRefGoogle Scholar
  18. Giannino D, Condello E, Bruno L, Testone G, Tartarini A, Cozza R, Innocenti AM, Bitonti MB, Mariotti D (2004) The gene geranylgeranyl reductase of peach (Prunus persica [L.] Batsch) is regulated during leaf development and responds differentially to distinct stress factors. J Exp Bot 55:2063–2073. doi: 10.1093/jxb/erh217 PubMedCrossRefGoogle Scholar
  19. Gittins JR, Pellny TK, Hiles ER, Rosa C, Biricolti S, James DJ (2000) Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill). Planta 210:232–240PubMedCrossRefGoogle Scholar
  20. Hajdukiewicz P, Svab Z, Maliga P (1994) The small versatile pZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994PubMedCrossRefGoogle Scholar
  21. Hull R, Covey SN, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb Ecol Health Dis 12:1–5Google Scholar
  22. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5(4):387–405CrossRefGoogle Scholar
  23. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907Google Scholar
  24. Joshi JP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001PubMedCrossRefGoogle Scholar
  25. Kanoria S, Burma PK (2012) A 28 nt long synthetic 50UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12:85. doi: 10.1186/1472-6750-12-85 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796–1799PubMedGoogle Scholar
  27. Kawalleck P, Somssich IE, Feldburgge M, Hahlbrock K, Weisshaar B (1993) Polyubiquitin gene expression and structural properties of the ubi4-2 gene in Petroselinum crispum. Plant Mol Biol 21:673–684PubMedCrossRefGoogle Scholar
  28. Kumar S, Timko MP (2004) Enhanced tissue-specific expression of the herbicide resistance bar gene in transgenic cotton (Gossypium hirsutum L cv. Coker 310FR) using the Arabidopsis rbcS ats1A promoter. Plant Biotechnol 21:251–259CrossRefGoogle Scholar
  29. Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-generating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18:59–63CrossRefGoogle Scholar
  30. Luehrsen K, Walbot V (1994) The impact of AUG start codon context on maize gene expression in vivo. Plant Cell Rep 13:454–458PubMedCrossRefGoogle Scholar
  31. Lukaszewicz M, Feuermann M, Jerouville B, Stas A, Boutry M (2000) In vivo evaluation of the context sequence of the translation initiation codon in plants. Plant Sci 154(1):89–98PubMedCrossRefGoogle Scholar
  32. Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6(1):43–48PubMedCentralPubMedGoogle Scholar
  33. Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6:143–156PubMedCrossRefGoogle Scholar
  34. Matsui T, Matsuura H, Sawada K, Takita E, Kinjo S, Takenami S, Ueda K, Nishigaki N, Yamasaki S, Hata K, Yamaguchi M, Demura T, Kato K (2012) High level expression of transgenes by use of 5′-untranslated region of the Arabidopsis thaliana arabinogalactan-protein 21 gene in dicotyledons. Plant Biotechnol 29:319–322. doi: 10.5511/plantbiotechnology.12.0322a CrossRefGoogle Scholar
  35. McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology 13:1484–1487PubMedCrossRefGoogle Scholar
  36. Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59PubMedCrossRefGoogle Scholar
  37. Nap JP, Van Spanje M, Dirske WG, Baarda G, Mlynarova L, Loonen A, Grondhuis P, Stiekema WJ (1993) Activity of the promoter of the Lhca3.St/1 gene, encoding the potato apo protein 2 of the light harvesting complex of photosystem 1 in transgenic potato and tobacco plants. Plant Mol Biol 23:605–612PubMedCrossRefGoogle Scholar
  38. Odell J, Nagy F, Chua N (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812PubMedCrossRefGoogle Scholar
  39. Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta 216:1003–1012PubMedGoogle Scholar
  40. Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60PubMedCrossRefGoogle Scholar
  41. Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73(4–5):363–378. doi: 10.1007/s11103-010-9628-1 PubMedCrossRefGoogle Scholar
  42. Rawat P, Ray K, Pental D, Burma PK (2008) Mutant acetolactate synthase gene conferring resistance to the herbicide ‘imazethapyr’ is an efficient in vitro selection marker for genetic transformation of cotton. Curr Sci 95(10):1454–1457Google Scholar
  43. Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228PubMedCrossRefGoogle Scholar
  44. Robinson SJ, Parkin IAP (2008) Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 9:434. doi: 10.1186/1471-2164-9-434 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sanger M, Daubert S, Goodman RM (1990) Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol 14:433–443PubMedCrossRefGoogle Scholar
  46. Satoh J, Kato K, Shinmyo A (2004) The 5′-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant. J Biosci Bioeng 98:1–8PubMedCrossRefGoogle Scholar
  47. Sawant SV, Singh PK, Gupta SK, Madanala R, Tuli R (1999) Conserved nucleotide sequence in highly expressed genes in plants. J Genet 78:123–131CrossRefGoogle Scholar
  48. Schenk PM, Sagi L, Remans T, Dietzgen RG, Bernard M, Graham M, Manners JM (1999) A promoter from sugarcane bacilliform badnarvirus drives transgene expression in banana and other monocot and dicot species. Plant Mol Biol 39:1221–1230PubMedCrossRefGoogle Scholar
  49. Schenk PM, Remans T, Sagi L, Elliot A, Dietzgen RG, Swennen R, Ebert P, Grof CPL, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412PubMedCrossRefGoogle Scholar
  50. Soitamo AJ, Piipo M, Allahverdiyeva Y, Battchikova N, Aro E-M (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13. doi: 10.1186/1471-2229-8-13 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Song P, Heinen JL, Burns TH, Allen RD (2000) Expression of two tissue-specific promoters in transgenic cotton plants. J Cot Sci 4:217–223Google Scholar
  52. Stavolone L, Kononova M, Pauli S, Ragozzino A, Haan P, Milligan S, Lawton K, Hohn T (2003) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53:703–713CrossRefGoogle Scholar
  53. Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15PubMedCrossRefGoogle Scholar
  54. Sugio T, Matsuura H, Matsui T, Matsunaga M, Nosho T, Kanaya S, Shinmyo A, Kato K (2010) Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells. J Biosci Bioeng 109(2):170–173. doi: 10.1016/j.jbiosc.2009.07.009 PubMedCrossRefGoogle Scholar
  55. Svab Z, Hajdukiewicz P, Maliga P (1995) Generation of transgenic tobacco plants by cocultivation of leaf disks with Agrobacterium pPZP binary vectors. In: Maliga P (ed) Methods in plant molecular biology: a laboratory course manual. Cold Spring Harbor Laboratory Press, Plainview NY, pp 55–77Google Scholar
  56. Taylor JL, Jones JDG, Sandier S, Mueller GM, Bedbrook JR, Dunsmuir P (1987) Optimizing the expression of chimeric genes in plant cells. Mol Gen Genet 210:572–577CrossRefGoogle Scholar
  57. Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15(14):5890PubMedCentralPubMedCrossRefGoogle Scholar
  58. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578. doi: 10.1016/j.tibtech.2003.10.002 PubMedCrossRefGoogle Scholar
  59. Tzafrir I, Torbert K, Lockhart B, Somers D, Olszewski E (1998) The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots. Plant Mol Biol 38:347–356PubMedCrossRefGoogle Scholar
  60. Verdaguer B, De Kochko A, Fux CI, Beachy RN, Fauquet C (1998) Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol 37:1055–1067PubMedCrossRefGoogle Scholar
  61. Wever W, McCallum EJ, Chakravorty D, Cazzonelli CI, Botella JR (2010) The 5′ untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants. Transgenic Res 19(4):667–674. doi: 10.1007/s11248-009-9332-6 PubMedCrossRefGoogle Scholar
  62. Yamamoto YY, Tsuji H, Obokata J (1995) 5′Leader of a photosystem I gene in Nicotiana sylvestris, psaDb, contains a translational enhancer. J Biol Chem 270:12466–12470PubMedCrossRefGoogle Scholar
  63. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. doi: 10.1093/nar/gkg595 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Parul Agarwal
    • 1
  • Varsha Garg
    • 1
  • Taru Gautam
    • 1
  • Beena Pillai
    • 2
  • Shaveta Kanoria
    • 1
  • Pradeep Kumar Burma
    • 1
    Email author
  1. 1.Department of GeneticsUniversity of DelhiNew DelhiIndia
  2. 2.Institute of Genomics and Integrative Biology (CSIR-IGIB)DelhiIndia

Personalised recommendations