Skip to main content
Log in

Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Plant-mediated RNAi has been developed as a powerful weapon in the fight against agricultural insect pests. The gap gene hunchback (hb) is of crucial importance in insect axial patterning and knockdown of hb is deforming and lethal to the next generation. The peach potato aphid, Myzus persicae (Sulzer), has many host plants and can be found throughout the world. To investigate the effect of plant-mediated RNAi on control of this insect, the hb gene in M. persicae was cloned, plant RNAi vector was constructed, and transgenic tobacco expressing Mphb dsRNA was developed. Transgenic tobacco had a different integration pattern of the transgene. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2 generation. Results revealed that continuous feeding of transgenic diet reduced Mphb mRNA level in the fed aphids and inhibited insect reproduction, indicating successful knockdown of the target gene in M. persicae by plant-mediated RNAi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annis B, Tamaki G, Berry RE (1981) Seasonal occurrence of wild secondary hosts of the green peach aphid, Myzus persicae (Sulzer), in agricultural systems in the Yakima Valley. Environ Entomol 10:307–312

    Google Scholar 

  • Baum J, Bogaert T, Clinton W, Heck G, Feldmann P (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19:777–786

    Article  CAS  PubMed  Google Scholar 

  • Chougule NP, Bonning BC (2012) Toxins for transgenic resistance to Hemipteran pests. Toxins 4:405–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  CAS  PubMed  Google Scholar 

  • Dzitoyeva S, Dimitrijevic N, Manev H (2001) Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry 6:665–670

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Perrimon N (1990) The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature 346:485–488

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Gordon KH, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotech 25:1231–1232

    Article  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang T, Cook CE, Davis GK, Shigenobu S, Chen RPY, Chang C (2010) Anterior development in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum: hunchback and orthodenticle expression. Insect Mol Biol 19:75–85

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  CAS  PubMed  Google Scholar 

  • Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Roux’s Arch Dev Biol 193:283–295

    Google Scholar 

  • Lehmann R, Nüsslein-Volhard C (1987) hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev Biol 119:402–417

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Kaufman TC (2004) hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131:1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Ding Z, Zhang C, Yang B, Liu Z (2010) Gene knockdown by introthoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 40:666–671

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lynch JA, Desplan C (2006) A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc 1:486–494

    Article  CAS  PubMed  Google Scholar 

  • Lynch JA, Brent AE, Leaf DS, Pultz MA, Desplan C (2006) Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 439:728–732

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zeng F (2012) Feeding-based RNA intereference of a gap gene is lethal to the pea aphid, Acyrthosiphon pisum. PLoS ONE 7(11):e48718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mao Y, Cai W, Wang J, Hong G, Tao X, Wang L, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotech 25:1307–1313

    Article  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  • Meyering-Vos M, Muller A (2007) RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J Insect Physiol 53:840–848

    Article  CAS  PubMed  Google Scholar 

  • Namba R, Sylvester ES (1981) Transmission of cauliflower mosaic virus by the green peach, turnip, cabbage, and pea aphids. J Econ Entomol 74:546–551

    Google Scholar 

  • Novotny T, Eiselt R, Urban J (2002) Hunchback is required for the specification of the early sublineage of neuroblast 7–3 in the Drosophila central nervous system. Development 129:1027–1036

    CAS  PubMed  Google Scholar 

  • Patel NH, Hayward DC, Lall S, Pirkl NR, DiPietro D, Ball EE (2001) Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development 128:3459–3472

    CAS  PubMed  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:1–8

    Article  Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  CAS  PubMed  Google Scholar 

  • Rosa C, Kamita SG, Falk BW (2012) RNA interference is induced in the glassy winged sharpshooter Homalodisca vitripennis by actin dsRNA. Pest Manag Sci 68(7):995–1002

    Article  CAS  PubMed  Google Scholar 

  • Schröder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621–625

    Google Scholar 

  • Tautz D, Lehmann R, Schürch H, Shuh R, Seifert E, Kienlin A, Jones K, Jäckle H (1987) Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327:383–389

    Article  CAS  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 4:1–13

    Article  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed Central  PubMed  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  CAS  PubMed  Google Scholar 

  • Wolff C, Sommer R, Schröder R, Glaser G, Tautz D (1995) Conserved and divergent expression aspects of the Drosophila segmentation gene hunchback in the short germband embryo of the flour beetle Tribolium. Development 121:4227–4236

    CAS  PubMed  Google Scholar 

  • Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insect Nilaparvata lugens. PLoS ONE 6(5):e20504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693

    Article  PubMed  Google Scholar 

  • Zhao YY, Liu F, Yang G, You MS (2011) PsOr1, a potential target for RNA interference-based pest management. Insect Mol Biol 20:97–104

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Xu J, Palli R, Ferguson J, Palli SR (2011) Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 7:175–182

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Project NSFC 31201570 and National Basic Research Program of China (973 Program) (2013CB127602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanrong Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J., Zeng, F. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae . Transgenic Res 23, 145–152 (2014). https://doi.org/10.1007/s11248-013-9739-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9739-y

Keywords

Navigation