Transgenic Research

, Volume 22, Issue 5, pp 993–1002 | Cite as

Transgene delivery via intracellular electroporetic nanoinjection

  • Aubrey M. Wilson
  • Quentin T. Aten
  • Nathan C. Toone
  • Justin L. Black
  • Brian D. Jensen
  • Susan Tamowski
  • Larry L. Howell
  • Sandra H. Burnett
Original Paper

Abstract

Development of an effective cytoplasmic delivery technique has remained an elusive goal for decades despite the success of pronuclear microinjection. Cytoplasmic injections are faster and easier than pronuclear injection and do not require the pronuclei to be visible; yet previous attempts to develop cytoplasmic injection have met with limited success. In this work we report a cytoplasmic delivery method termed intracellular electroporetic nanoinjection (IEN). IEN is unique in that it manipulates transgenes using electrical forces. The microelectromechanical system (MEMS) uses electrostatic charge to physically pick up transgenes and place them in the cytoplasm. The transgenes are then propelled through the cytoplasm and electroporated into the pronuclei using electrical pulses. Standard electroporation of whole embryos has not resulted in transgenic animals, but the MEMS device allows localized electroporation to occur within the cytoplasm for transgene delivery from the cytoplasm to the pronucleus. In this report we describe the principles which allow localized electroporation of the pronuclei including: the location of mouse pronuclei between 21 and 28 h post-hCG treatment, modeling data predicting the voltages needed for localized electroporation of pronuclei, and data on electric-field-driven movement of transgenes. We further report results of an IEN versus microinjection comparative study in which IEN produced transgenic pups with viability, transgene integration, and expression rates statistically comparable to microinjection. The ability to perform injections without visualizing or puncturing the pronuclei will widely benefit transgenic research, and will be particularly advantageous for the production of transgenic animals with embryos exhibiting reduced pronuclear visibility.

Keywords

Nanoinjection Microinjection Transgenic Electroporation Pronuclear migration DNA transfer 

References

  1. Aten Q, Jensen B, Burnett S, Howell LL (2011) Electrostatic accumulation and release of DNA using a micromachined lance. J MEMS 20:1449–1461CrossRefGoogle Scholar
  2. Aten QT, Jensen BD, Tamowski S, Wilson AM, Howell LL, Burnett SH (2012) Nanoinjection: pronuclear DNA delivery using a charged lance. Transgenic Res. doi:10.1007/s11248-012-9610-6 PubMedGoogle Scholar
  3. Audubert R, Mende SD (1960) The Principles of electrophoresis. Macmillan, New YorkGoogle Scholar
  4. Auerbach AB (2004) Production of functional transgenic mice by DNA pronuclear microinjection. Acta Biochim Pol 51(1):9–31. doi:045101009 PubMedGoogle Scholar
  5. Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82(13):4438–4442PubMedCrossRefGoogle Scholar
  6. Brinster RL, Braun RE, Lo D, Avarbock MR, Oram F, Palmiter RD (1989) Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc Natl Acad Sci USA 86(18):7087–7091PubMedCrossRefGoogle Scholar
  7. Brown L, Cai T, DasGupta A (2001) Interval estimation for a binomail proportion. Stat Sci 16(2):101–133Google Scholar
  8. Cui X, Ji D, Fisher D, Wu Y, Briner D, Weinstein E (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67PubMedCrossRefGoogle Scholar
  9. David RA, Jensen BD, Black JL, Burnett SH, Howell LL (2010) Modeling and experimental validation of DNA motion in uniform and nonuniform DC electric fields. J Nanotechnol Eng Med 1(4):041007CrossRefGoogle Scholar
  10. David RA, Jensen BD, Black JL, Burnett SH, Howell LL (2011) Effects of dissimilar electrode materials and electrode position on DNA motion during electrophoresis. J Nanotechnol Eng Med 2(2):021014CrossRefGoogle Scholar
  11. Eroglu A, Lawitts JA, Toner M, Toth TL (2003) Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development. Cryobiology 46(2):121–134PubMedCrossRefGoogle Scholar
  12. Everitt B (1992) The Analysis of Contigency Tables. Chapman & Hall, New YorkGoogle Scholar
  13. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77(12):7380–7384PubMedCrossRefGoogle Scholar
  14. Grabarek JB, Plusa B, Glover DM, Zernicka-Goetz M (2002) Efficient delivery of dsRNA into zona-enclosed mouse oocytes and preimplantation embryos by electroporation. Genesis 32(4):269–276PubMedCrossRefGoogle Scholar
  15. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683PubMedCrossRefGoogle Scholar
  16. Howell LL (2001) Compliant Mechanisms. Wiley, New YorkGoogle Scholar
  17. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24(3):279–282. doi:10.1038/73502 PubMedCrossRefGoogle Scholar
  18. Reed ML, Roessner CA, Womack JE, Dorn CC, Kraemer DC (1988) Microinjection of liposome-encapsulated DNA into murine and bovine blastocysts. Theriogenology 29:293CrossRefGoogle Scholar
  19. Kubiak JZ, Chesnel F, Richard-Parpaillon L, Bazile F, Pascal A, Polanski Z, Sikora-Polaczek M, Maciejewska Z, Ciemerych MA (2008) Temporal regulation of the first mitosis in Xenopus and mouse embryos. Mol Cell Endocrinol 282(1–2):63–69. doi:10.1016/j.mce.2007.11.023 PubMedCrossRefGoogle Scholar
  20. Loskutoff NM, Roessner CA, Kraemer DC (1986) Preliminary studies on liposome-mediated gene transfer: effects on survivability of murine zygotes. Theriogenology 25:169CrossRefGoogle Scholar
  21. Mayer W, Smith A, Fundele R, Haaf T (2000) Spatial separation of parental genomes in preimplantation mouse embryos. J Cell Biol 148(4):629–634PubMedCrossRefGoogle Scholar
  22. Nagy A, Gertenstein M, Vintersten K, Behringer R (2003) Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  23. Osman GE, Jacobson DP, Li SW, Hood LE, Liggitt HD, Ladiges WC (1997) SWR: an inbred strain suitable for generating transgenic mice. Lab Anim Sci 47(2):167–171PubMedGoogle Scholar
  24. Page RL, Butler SP, Subramanian A, Gwazdauskas FC, Johnson JL, Velander WH (1995) Transgenesis in mice by cytoplasmic injection of polylysine/DNA mixtures. Transgenic Res 4(6):353–360PubMedCrossRefGoogle Scholar
  25. Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434(7031):391–395. doi:10.1038/nature03388 PubMedCrossRefGoogle Scholar
  26. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60(2):297–306. doi:10.1016/s0006-3495(91)82054-9 PubMedCrossRefGoogle Scholar
  27. Upton GJG (1992) Fisher’s exact test. J Roy Stat Soc A Sta 155(3):395–402CrossRefGoogle Scholar
  28. Wall RJ (2001) Pronuclear microinjection. Cloning Stem Cells 3(4):209–220. doi:10.1089/15362300152725936 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Aubrey M. Wilson
    • 1
  • Quentin T. Aten
    • 2
  • Nathan C. Toone
    • 2
  • Justin L. Black
    • 1
  • Brian D. Jensen
    • 2
  • Susan Tamowski
    • 3
  • Larry L. Howell
    • 2
  • Sandra H. Burnett
    • 1
  1. 1.Microbiology and Molecular Biology Department, 775 WIDBBrigham Young UniversityProvoUSA
  2. 2.Mechanical Engineering Department, 435 CTBBrigham Young UniversityProvoUSA
  3. 3.Transgenic and Gene Targeting Mouse Core, 2000 Circle of HopeUniversity of UtahSalt Lake CityUSA

Personalised recommendations