Transgenic Research

, Volume 22, Issue 4, pp 725–736 | Cite as

Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production

  • Henrike NichterleinEmail author
  • Anja Matzk
  • Leszek Kordas
  • Josef Kraus
  • Carsten Stibbe
Original Paper


In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.


Glyphosate Herbicide resistance Sugar beet Weed control White sugar yield 


  1. Beißner L, Buettner G (2000) Herbizidstress bei Zuckerrüben: Physiologie, Symptomatik und Schadrelevanz. In: Proceedings of the 63rd IIRB congress, February 2000, InterlakenGoogle Scholar
  2. Bennett R, Phipps R, Strange A, Grey P (2004) Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment. Plant Biotechnol J 2:273–278PubMedCrossRefGoogle Scholar
  3. Bräutigam H (1998) Untersuchungen zur Konkurrenz zwischen Unkraut und Zuckerrüben - Auftreten, Ursachen und Konsequenzen für die Unkrautregulierung. Dissertation, Cuvillier Verlag GöttingenGoogle Scholar
  4. Brooks DR, Bohan DA, Champion GT, Haughton AJ, Hawes C, Heard MS, Clark SJ, Dewar AM, Firbank LG, Perry JN, Rothery P, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Bell D, Browne EL, Dewar AJG, Fairfax CM, Garner BH, Haylock LA, Horne SL, Hulmes SE, Mason NS, Norton LR, Nuttall P, Randle Z, Rossall MJ, Sands RJN, Singer EJ, Walker MJ (2003) Invertebrate responses to the management of weeds in genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Phil Trans R Soc Lond B 358:1847–1862CrossRefGoogle Scholar
  5. Buchholz K, Märländer B, Puke H, Glattkowski H, Thielecke K (1995) Neubewertung des technischen Wertes von Zuckerrüben. Sugar Ind 120(2):113–121Google Scholar
  6. Buhre C, Fecke P, Nelles F, Schlinker G, Ladewig E (2011) Entwicklungen im Pflanzenschutz aus der Produktionstechnik im Vergleich zur Erhebung NEPTUN. Sonderheft 10. Göttinger Zuckerrübentagung. Sugar Ind 136:13–20Google Scholar
  7. Carpenter JE (2011) Impact of GM crops on biodiversity. GM Crops 2(1):7–23. doi: 10.4161/gmcr.2.1.15086 PubMedCrossRefGoogle Scholar
  8. Champion GT, May MJ, Bennett S, Brooks DR, Clark SJ, Daniels RE, Firbank LG, Haughton AJ, Hawes C, Heard MS, Perry JN, Randle Z, Rossall MJ, Rothery P, Skellern MP, Scott RJ, Squire GR, Thomas MR (2003) Crop management and agronomic context of the farm scale evaluations of genetically modified herbicide-tolerant crops. Phil Trans R Soc Lond B 358:1801–1818CrossRefGoogle Scholar
  9. Coyette B, Tencalla F, Brants I, Fichet Y, Rouchouze D (2002) Effect of introducing glyphosate-tolerant sugar beet on pesticide usage in Europe. Pestic Outlook 10:219–223CrossRefGoogle Scholar
  10. de Mendiburu F (2010) Agricolae: statistical procedures for agricultural research. R package version 1.0-9.
  11. Dewar AM, Haylock LA, Bean KM, May MJ (2000) Delayed control of weeds in glyphosate-tolerant sugar beet and the consequences on aphid infestation and yield. Pest Manag Sci 56:345–350CrossRefGoogle Scholar
  12. Dewar AM, May MJ, Woiwod IP, Haylock LA, Champion GT, Garner BH, Sands RJN, Qi A, Pidgeon JD (2003) A novel approach to the use of genetically modified herbicide tolerant crops for environmental benefit. Proc R Soc Lond B 270:335–340. doi: 10.1098/rspb.2002.2248 CrossRefGoogle Scholar
  13. Dewar AM, Haylock LA, Garner BH, Sands RJN, Baker P (2005) The environmental impact of GM herbicide-tolerant sugarbeet. Aspects of Appl Biol 74:119–126Google Scholar
  14. Harzler B, Boerboom C, Nice G, Sikkema P (2006) Understanding glyphosate to increase performance. The glyphosate, weeds, and crops series. GWC 2:5Google Scholar
  15. Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Browne EL, Dewar AJG, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJN, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Phil Trans R Soc Lond B 358:1863–1877CrossRefGoogle Scholar
  16. Hawes C, Haughton AJ, Osborne JL, Roy DB, Clark SJ, Perry JN, Rothery P, Bohan DA, Brooks DR, Champion GT, Dewar AM, Heard MS, Woiwod IP, Daniels RE, Young MW, Parish AM, Scott RJ, Firbank LG, Squire GR (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Phil Trans R Soc Lond B 358:1899–1913CrossRefGoogle Scholar
  17. Heard MS, Hawes C, Champion GT, Clark SJ, Firbank LG, Haughton AJ, Parish AM, Perry JN, Rothery P, Scott RJ, Skellern MP, Squire GR, Hill MI (2003) Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects on abundance and diversity. Phil Trans R Soc Lond B 358:1819–1832CrossRefGoogle Scholar
  18. Hoffmann C (2006) Zuckerrüben als Rohstoff. Die technische Qualität als Voraussetzung für eine effiziente Verarbeitung. Habilitationsschrift. GöttingenGoogle Scholar
  19. James C (2009) Global status of commercialized biotech/GM crops: 2009. ISAAA Brief No. 41, ISAAA, Ithaca, NYGoogle Scholar
  20. James C (2010) Global status of commercialized biotech/GM crops: 2010. ISAAA Brief No. 42, ISAAA, Ithaca, NYGoogle Scholar
  21. James C (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Brief No. 43, Executive Summary. ISAAA, Ithaca, NYGoogle Scholar
  22. Keuls M (1952) The use of the “studentized range” in connection with an analysis of variance. Euphytica 1:112–122CrossRefGoogle Scholar
  23. Khan MFR (2010) Introduction of glyphosate-tolerant sugar beet in the United States. Outlooks Pest Manag 21(1):38–41CrossRefGoogle Scholar
  24. Kleter GA, Harris C, Stephenson G, Unsworth J (2008) Review: comparison of herbicide regimes and the associated potential environmental effects of glyphosate-resistant crops versus what they replace in Europe. Pest Manag Sci 64:479–488PubMedCrossRefGoogle Scholar
  25. Kniss AR (2010) Comparison of conventional and glyphosate-resistant sugarbeet the year of commercial introduction in Wyoming. J Sugar Beet Res 47:127–134CrossRefGoogle Scholar
  26. Kniss AR, Wilson RG, Martin AR, Burgener PA, Feuz DM (2004) Economic evaluation of glyphosate-resistant and conventional sugar beet. Weed Technol 18(2):388–396CrossRefGoogle Scholar
  27. Konietschke F (2011) nparcomp: nparcomp-package. R package version 1.0-1.
  28. Kraus J, Sauerbrey E, Nehls R, Loock A, Jansen R (2003) Glyphosate tolerant sugar beet. U.S. Patent Application, US020040172669A1Google Scholar
  29. Lutmann PJW, Berry K, May MJ, Champion GT, Clarke JH, Cook SK (2005) Final report: agronomic and environmental implications of the establishment of GM herbicide tolerant problem weeds. Department for Environment Food and Rural Affairs.
  30. Madden LV, Hughes G, Van den Bosch F (2007) The study of plant disease epidemics. APS Press, St. PaulGoogle Scholar
  31. Maier K, Baron O, Bruhns J (2012) Zuckerwirtschaft Europa. 58. Auflage. Bartens, BerlinGoogle Scholar
  32. Märländer B (2005) Weed control in sugar beet using genetically modified herbicide-tolerant varieties—a review of the economics for cultivation in Europe. J Agron Crop Sci 191:64–74CrossRefGoogle Scholar
  33. Märländer B, Bückmann H (1999) Genetically modified varieties in Germany-status and prospects with special respect of a sustainable sugar beet cultivation. Sugar Ind 124(12):943–946Google Scholar
  34. Märländer B, von Tiedemann A (2006) Herbizidtolerante Kulturpflanzen—Anwendungspotenziale und Perspektiven. Schriftenreihe der Deutschen Phytomedizinischen Gesellschaft e.V. 8, 32–45, ISSN 0939-8929. Eugen Ulmer KG, StuttgartGoogle Scholar
  35. Märländer B, Hoffmann C, Koch HJ, Ladewig E, Merkes R, Petersen J, Stockfisch N (2003) Environmental situation and yield performance of sugar beet crop in Germany: heading for sustainable development. J Agron Crop Sci 189:201–226CrossRefGoogle Scholar
  36. May MJ (2000) Efficiency and selectivity of RR and LL weed control techniques compared to classical weed control systems. In: Proceedings of the 63rd IIRB congress, February 2000, InterlakenGoogle Scholar
  37. May MJ (2001) Crop protection in sugar beet. Pestic Outlook 10:188–191. doi: 10.1039/b108605g CrossRefGoogle Scholar
  38. May MJ (2003) Economic consequences for UK farmers of growing GM herbicide tolerant sugar beet. Ann Appl Biol 142:41–48CrossRefGoogle Scholar
  39. May MJ, Champion GT, Dewar AM, Qi A, Pidgeon JD (2005) Management of genetically modified herbicide-tolerant sugar beet for spring and autumn environmental benefit. Poc R Soc B 272:111–119. doi: 101098/rspb.2004.2948 CrossRefGoogle Scholar
  40. OECD (2003) BioTrack Product Database.
  41. Park J, McFarlane I, Phipps R, Ceddia G (2011) The impact of the EU regulatory constraint of transgenic crops on farm income. New Biotechnol 2011. doi: 10.1016/j.nbt.2011.01.005
  42. Petersen J, Röver A (2005) Comparison of sugar beet cropping systems with dead and living mulch using a glyphosate-resistant hybrid. J Agron Crop Sci 191:55–56CrossRefGoogle Scholar
  43. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  44. Schweizer EE, Dexter AG (1987) Weed control in sugarbeets (beta vulgaris) in North America. Rev Weed Sci 3:1133Google Scholar
  45. Wellmann A (1999) Konkurrenzbeziehungen und Schadensprognose in Zuckerrüben bei variiertem zeitlichen Auftreten von Chenopodium album L. und Chamomilla recutita (L.) Rauschert. Dissertation, Cuvillier Verlag GöttingenGoogle Scholar
  46. Wevers JDA (2000) Herbicide tolerance and the effects on the environmental contamination. In: Proceedings of the 63rd IIRB congress, February 2000, InterlakenGoogle Scholar
  47. Wilson RG, Sbatella GM (2011) Late-season weed control in glyphosate-resistant sugarbeet. Weed Technol 25:350–355CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Henrike Nichterlein
    • 1
    Email author
  • Anja Matzk
    • 1
  • Leszek Kordas
    • 2
  • Josef Kraus
    • 1
  • Carsten Stibbe
    • 1
  1. 1.KWS SAAT AGEinbeckGermany
  2. 2.Department of Agroecosystems ManagementWroclaw University of Environmental and Life SciencesWroclawPoland

Personalised recommendations