Skip to main content
Log in

Continuous oxidative stress due to activation of polyamine catabolism accelerates aging and protects against hepatotoxic insults

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Enhanced polyamine catabolism via polyamine acetylation-oxidation elevates the oxidative stress in an organism due to increased production of reactive oxygen species (ROS). We studied a transgenic mouse line overexpressing the rate limiting enzyme in the polyamine catabolism, spermidine/spermine N 1-acetyltransferase (SSAT) that is characterized by increased putrescine and decreased spermidine and spermine pools. In order to protect the mice from the chronic oxidative stress produced by the activation of polyamine catabolism, the hepatic expression of the transcription factor p53 was found threefold elevated in the transgenic mice. In addition, the prolonged activation of p53 accelerated the aging of transgenic mice and reduced their lifespan (50%). Aging was associated with decreased antioxidant enzyme activities. In the transgenic mice the activities of catalase and Cu, Zn-superoxide dismutase (SOD) were 42 and 23% reduced respectively, while the expression of CYP450 2E1 was 60% decreased and oxidative stress measured as protein carbonyl content was tenfold elevated. In the transgenic mice, the age-related repression of the different antioxidant enzymes served as a protection against the hepatotoxic effects of carbon tetrachloride and thioacetamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi: 6727660

    CAS  Google Scholar 

  • Amon A, Irniger S, Nasmyth K (1994) Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77:1037–1050

    CAS  PubMed  Google Scholar 

  • Bailey HH, Gipp JJ, Ripple M, Wilding G, Mulcahy RT (1992) Increase in gamma-glutamylcysteine synthetase activity and steady-state messenger RNA levels in melphalan-resistant DU-145 human prostate carcinoma cells expressing elevated glutathione levels. Cancer Res 52:5115–5118

    CAS  PubMed  Google Scholar 

  • Bauer JH, Helfand SL (2006) New tricks of an old molecule: lifespan regulation by p53. Aging Cell 5:437–440. doi:10.1111/j.1474-9726.2006.00228.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacki RJ, Oberman EJ, Seweryniak KE, Atwood A, Bergeron RJ, Porter CW (1995) Preclinical antitumor efficacy of the polyamine analogue N1, N11-diethylnorspermine administered by multiple injection or continuous infusion. Clin Cancer Res 1:847–857. doi: 9816054

    CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Rakoczy SG (2000) Catalase expression in delayed and premature aging mouse models. Exp Gerontol 35:199–212

    CAS  PubMed  Google Scholar 

  • Casero RA, Pegg AE (1993) Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. FASEB J 7:653–661. doi: 8500690

    CAS  PubMed  Google Scholar 

  • Cerrada-Gimenez M, Häyrinen J, Juutinen S, Reponen T, Jänne J, Alhonen L (2009) Proteomic analysis of livers from a transgenic mouse line with activated polyamine catabolism. Amino Acids. doi:10.1007/s00726-009-0420-y

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10:471–480

    CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314. doi:10.1038/ncb1975

    CAS  PubMed  Google Scholar 

  • Finkelstein JD, Kyle W, Harris BJ (1971) Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys 146:84–92

    CAS  PubMed  Google Scholar 

  • Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89:3070–3074

    CAS  PubMed  Google Scholar 

  • Hölttä E (1977) Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16:91–100

    PubMed  Google Scholar 

  • Hyvönen T, Keinänen TA, Khomutov AR, Khomutov RM, Eloranta TO (1992) Monitoring of the uptake and metabolism of aminooxy analogues of polyamines in cultured cells by high-performance liquid chromatography. J Chromatogr 574:17–21

    PubMed  Google Scholar 

  • Hyvönen MT, Sinervirta R, Grigorenko N, Khomutov AR, Vepsäläinen J, Keinänen TA, Alho L (2009) α-Methylspermidine prevents carbon tetrachloride-induced hepatic and pancreatic damage. Amino Acids 38(2):575–581

    PubMed  Google Scholar 

  • Jänne J, Williams-Ashman HG (1971a) On the purification of l-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme. J Biol Chem 246:1725–1732. doi: 5547701

    PubMed  Google Scholar 

  • Jänne J, Williams-Ashman HG (1971b) Dissociation of putrescine-activated decarboxylation of S-adenosyl-l-methionine from the enzymic synthesis of spermidine and spermine by purified prostatic enzyme preparations. Biochem Biophys Res Commun 42:222–229

    PubMed  Google Scholar 

  • Jänne J, Alhonen L, Pietilä M, Keinänen TA (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271:877–894

    PubMed  Google Scholar 

  • Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 90:1112–1116

    CAS  PubMed  Google Scholar 

  • Kramer DL, Chang BD, Chen Y, Diegelman P, Alm K, Black AR, Roninson IB, Porter CW (2001) Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype. Cancer Res 61:7754–7762

    CAS  PubMed  Google Scholar 

  • Lee FY, Siemann DW, Sutherland RM (1989) Changes in cellular glutathione content during adriamycin treatment in human ovarian cancer—a possible indicator of chemosensitivity. Br J Cancer 60:291–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186:464–478

    CAS  PubMed  Google Scholar 

  • Manibusan MK, Odin M, Eastmond DA (2007) Postulated carbon tetrachloride mode of action: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 25:185–209. doi:10.1080/10590500701569398

    CAS  PubMed  Google Scholar 

  • Matheu A, Maraver A, Serrano M (2008) The Arf/p53 pathway in cancer and aging. Cancer Res 68:6031–6034. doi:10.1158/0008-5472.CAN-07-6851

    CAS  PubMed  Google Scholar 

  • Matsui I, Wiegand L, Pegg AE (1981) Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. J Biol Chem 256:2454–2459

    CAS  PubMed  Google Scholar 

  • Oredsson SM (2003) Polyamine dependence of normal cell-cycle progression. Biochem Soc Trans 31:366–370. doi: 10.1042/

    CAS  PubMed  Google Scholar 

  • Pegg AE (2008) Spermidine/spermine-N1-acetyltransferase; a key metabolic regulator. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.90217.2008

  • Pietilä M, Alhonen L, Halmekytö M, Kanter P, Jänne J, Porter CW (1997) Activation of polyamine catabolism profoundly alters tissue polyamine pools and affects hair growth and female fertility in transgenic mice overexpressing spermidine/spermine N1-acetyltransferase. J Biol Chem 272:18746–18751

    PubMed  Google Scholar 

  • Pietilä M, Parkkinen JJ, Alhonen L, Jänne J (2001) Relation of skin polyamines to the hairless phenotype in transgenic mice overexpressing spermidine/spermine N-acetyltransferase. J Invest Dermatol 116:801–805. doi:10.1046/j.1523-1747.2001.01330.x

    PubMed  Google Scholar 

  • Pietilä M, Pirinen E, Keskitalo S, Juutinen S, Pasonen-Seppänen S, Keinänen T, Alhonen L, Jänne J (2005) Disturbed keratinocyte differentiation in transgenic mice and organotypic keratinocyte cultures as a result of spermidine/spermine N-acetyltransferase overexpression. J Invest Dermatol 124:596–601. doi:10.1111/j.0022-202X.2005.23636.x

    PubMed  Google Scholar 

  • Rhee SG, Yang K, Kang SW, Woo HA, Chang T (2005) Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7:619–626. doi:10.1089/ars.2005.7.619

    CAS  PubMed  Google Scholar 

  • Scalabrino G, Ferioli ME (1984) Polyamines in mammalian ageing: an oncological problem, too? A review. Mech Ageing Dev 26:149–164

    CAS  PubMed  Google Scholar 

  • Semsei I, Rao G, Richardson A (1989) Changes in the expression of superoxide dismutase and catalase as a function of age and dietary restriction. Biochem Biophys Res Commun 164:620–625

    CAS  PubMed  Google Scholar 

  • Senft AP, Dalton TP, Shertzer HG (2000) Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal Biochem 280:80–86. doi:10.1006/abio.2000.4498

    CAS  PubMed  Google Scholar 

  • She QB, Nagao I, Hayakawa T, Tsuge H (1994) A simple HPLC method for the determination of S-adenosylmethionine and S-adenosylhomocysteine in rat tissues: the effect of vitamin B6 deficiency on these concentrations in rat liver. Biochem Biophys Res Commun 205:1748–1754. doi:10.1006/bbrc.1994.2871

    CAS  PubMed  Google Scholar 

  • Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F (2009) Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 44:727–732. doi:10.1016/j.exger.2009.08.013

    CAS  PubMed  Google Scholar 

  • Suppola S, Pietilä M, Parkkinen JJ, Korhonen VP, Alhonen L, Halmekytö M, Porter CW, Jänne J (1999) Overexpression of spermidine/spermine N1-acetyltransferase under the control of mouse metallothionein I promoter in transgenic mice: evidence for a striking post-transcriptional regulation of transgene expression by a polyamine analogue. Biochem J 338(Pt 2):311–316. doi: 10024505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Minagawa S, Michishita E, Ogino H, Fujii M, Mitsui Y, Ayusawa D (2001) Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol 36:465–474

    CAS  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (1994) Regulation of cyclin B1 by estradiol and polyamines in MCF-7 breast cancer cells. Cancer Res 54:1077–1084

    CAS  PubMed  Google Scholar 

  • Trolin CG, Löfberg C, Trolin G, Oreland L (1994) Brain ATP: l-methionine S-adenosyltransferase (MAT), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH): regional distribution and age-related changes. Eur Neuropsychopharmacol 4:469–477

    CAS  PubMed  Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53. doi:10.1038/415045a

    CAS  PubMed  Google Scholar 

  • Varela-Moreiras G, Pérez-Olleros L, García-Cuevas M, Ruiz-Roso B (1994) Effects of ageing on folate metabolism in rats fed a long-term folate deficient diet. Int J Vitam Nutr Res 64:294–299

    CAS  PubMed  Google Scholar 

  • Wallace HM (2003) Polyamines and their role in human disease—an introduction. Biochem Soc Trans 31:354–355. doi: 10.1042/.

    CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14. doi: 13678416.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wauthier V, Verbeeck RK, Calderon PB (2007) The effect of ageing on cytochrome p450 enzymes: consequences for drug biotransformation in the elderly. Curr Med Chem 14:745–757

    CAS  PubMed  Google Scholar 

  • Wong FW, Chan WY, Lee SS (1998) Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 153:109–118. doi:10.1006/taap.1998.8547

    CAS  PubMed  Google Scholar 

  • Wu G, Fang Y, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms Tuula Reponen, Ms Marita Heikkinen and Ms Sisko Juutinen for their skilful technical assistance. This work was supported by grants from Academy of Finland and the North Savo regional fund from the Finnish Cultural Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Cerrada-Gimenez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerrada-Gimenez, M., Pietilä, M., Loimas, S. et al. Continuous oxidative stress due to activation of polyamine catabolism accelerates aging and protects against hepatotoxic insults. Transgenic Res 20, 387–396 (2011). https://doi.org/10.1007/s11248-010-9422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9422-5

Keywords

Navigation