Skip to main content

Advertisement

Log in

Chromosome integration of BAC (bacterial artificial chromosome): evidence of multiple rearrangements

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

This paper reports our attempts to characterize transgene integration sites in transgenic mouse lines generated by the microinjection of large (from 30 to 145 kb) pig DNA fragments encompassing a mammary specific gene, the whey acidic protein gene (WAP). Among the various methods used, the thermal asymmetric interlaced (TAIL-) PCR method allowed us (1) to analyze transgene/genomic borders and internal concatamer junctions for eleven transgenic lines, (2) to obtain sequence information for seven borders, (3) to place three transgenes in the mouse genome, and (4) to obtain sequence data for seven transgene junctions in concatamers. Finally, we characterized various rearrangements in the borders and the inner parts of the transgene. The possibility of such complex rearrangements should be carefully considered when transgenic animals are produced with large genomic DNA fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abrahams BS, Chong ACO, Nisha M, Milette D, Brewster DA, Berry ML, Muratkhodjaev F, Mai S, Rajcan-Separovic E, Simpson EM (2003) Metaphase FISHing of transgenic mice recommended: FISH and SKY define BAC-mediated balanced translocation. Genesis 36:134–141

    Article  CAS  PubMed  Google Scholar 

  • Bishop J (1996) Chromosomal insertion of foreign DNA. Reprod Nutr Dev 36:607–618

    CAS  PubMed  Google Scholar 

  • Chandler KJ, Chandler RL, Broeckelmann EM, Hou Y, Southard-Smith EM, Mortlock DP (2007) Relevance of BAC transgene copy number in mice: transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression. Mamm Genome 18:693–708

    Article  CAS  PubMed  Google Scholar 

  • Chen C-M, Choo K-B, Cheng W (1995) Frequent deletions and sequence aberrations at the transgene junctions of transgenic mice carrying the papillomavirus regulatory and the SV40 TAg gene sequences. Transgenic Res 4:52–59

    Article  CAS  PubMed  Google Scholar 

  • Giraldo P, Rival-Gervier S, Houdebine L-M, Montoliu L (2003) The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res 12:751–755

    Article  CAS  PubMed  Google Scholar 

  • Houdebine LM (2007) Transgenic animal models in biomedical research. Methods Mol Biol 360:163–202

    CAS  PubMed  Google Scholar 

  • Houdebine LM (2009) Design of expression cassettes for the generation of transgenic animals (including insulators). In: I Anegon (ed) Rat genomics: methods and protocols. Methods in molecular biology, vol 597. doi: 10.1007/978-1-60327-389-3_4, Humana Press, Totowa, LLC2010

  • Kamisugi Y, Schlink K, Rensing SA, Schween G, von Stackelberg M, Cuming AC, Reski R, Cove DJ (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res 34:6205–6214

    Article  CAS  PubMed  Google Scholar 

  • Kang Y-K, Park JS, Lee C-S, Yeom YI, Chung A-S, Lee K-K (1999) Efficient integration of short interspersed element-flanked foreign DNA via homologous recombination. J Biol Chem 274:36585–36591

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Breman A, Grimes B, Rosen E (2008) Identifying and genotyping transgene integration loci. Transgenic Res 17:979–983

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-G, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques 43:649–656

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whittier R (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-G, Mitsukawa N, Oosumi T, Whittier R (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Mehta AK, Majumdar SS, Alam P, Gulati N, Brahmachari V (2009) Epigenetic regulation of cytomegalovirus major immediate-early promoter activity in transgenic mice. Gene 428:20–24

    Article  CAS  PubMed  Google Scholar 

  • Montoliu L, Roy R, Regales L, GarcÌa-DÌaz N (2009) Design of vectors for transgene expression: The use of genomic comparative approaches. Comp Immunol Microbiol Infect Dis 32:81–90

    Article  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Pawlik K, Sun C-W, Higgins P, Townes T (1995) End joining of genomic DNA and transgene DNA in fertilized mouse eggs. Gene 165:173–181

    Article  CAS  PubMed  Google Scholar 

  • Saidi S, Rival-Gervier S, Daniel-Carlier N, Thépot D, Morgenthaler C, Viglietta C, Prince S, Passet B, Houdebine L, Jolivet G (2007) Distal control of the pig whey acidic protein (WAP) locus in transgenic mice. Gene 401:97–107

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao P, Chabaud M, Ratet P, Kirankumar S (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  CAS  PubMed  Google Scholar 

  • VanKeuren M, Gavrilina G, Filipiak W, Zeidler M, Saunders T (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes Transgenic Res (in press)

  • Würtele H, Little K, Chartrand P (2003) Illegitimate DNA integration in mammalian cells. Gene Ther 10:1791–1799

    Article  PubMed  Google Scholar 

Download references

Aknowledgments

This work was supported by the ANR program ANR-06-POGM-008_TRANSINTEX. We thank P. Ratet (Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France) for his fruitful advices concerning the use of TAIL-PCR method and the members of the mouse facility (UEAR, Jouy-en-Josas, France) for the maintenance of animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Jolivet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Saux, A., Houdebine, LM. & Jolivet, G. Chromosome integration of BAC (bacterial artificial chromosome): evidence of multiple rearrangements. Transgenic Res 19, 923–931 (2010). https://doi.org/10.1007/s11248-010-9368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9368-7

Keywords

Navigation