Transgenic Research

, Volume 19, Issue 5, pp 799–808 | Cite as

Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector

  • L. Hiripi
  • D. Negre
  • F.-L. Cosset
  • K. Kvell
  • T. Czömpöly
  • M. Baranyi
  • E. Gócza
  • O. Hoffmann
  • B. Bender
  • Zs. Bősze
Original Paper

Abstract

Transgenic rabbit is the preferred disease model of atherosclerosis, lipoprotein metabolism and cardiovascular diseases since upon introducing genetic mutations of human genes, rabbit models reflect human physiological and pathological states more accurately than mouse models. Beyond that, transgenic rabbits are also used as bioreactors to produce pharmaceutical proteins in their milk. Since in the laboratory rabbit the conventional transgenesis has worked with the same low efficiency in the last twenty five years and truly pluripotent embryonic stem cells are not available to perform targeted mutagenesis, our aim was to adapt lentiviral transgenesis to this species. A simian immunodeficiency virus based replication defective lentiviral vector was used to create transgenic rabbit through perivitelline space injection of fertilized oocytes. The enhanced green fluorescent protein (GFP) gene was placed under the ubiquitous CAG promoter. Transgenic founder rabbits showed mosaic pattern of GFP expression. Transgene integration and expression was revealed in tissues derived from all three primary germ layers. Transgene expression was detected in the developing sperm cells and could get through the germ line without epigenetic silencing, albeit with very low frequency. Our data show for the first time, that lentiviral transgenesis could be a feasible and viable alternative method to create genetically modified laboratory rabbit.

Keywords

Laboratory rabbit Lentiviral transgenesis Simian immunodeficiency virus Mosaic expression Germ-line transmission 

Supplementary material

11248_2009_9356_MOESM1_ESM.tif (1.6 mb)
Supplementary Fig. 1. Integrated transgene copy number determination with Southern analysis. (A) Southern blot of BamHI-digested genomic DNA isolated from SIV-CAG-eGFP transgenic founder rabbit ear samples. Lines: 1–2: founder rabbit; line 3: non-transgenic rabbit, negative control; line 4: GFP-transgenic mouse (Kvell et al. 2009), positive control. (B) The lentiviral vector carrying the CAG-GFP transgene, LTR, long terminal repeat; CPPT, polypurine tract; WPRE, woodchuck hepatitis responsive element; dotted lines, rabbit genome. (TIFF 1652 kb)

References

  1. Besenfelder U, Aigner B, Müller M, Brem G (1998) Generation and application of transgenic rabbits. In: Cid-Arregui A, Garcia-Carrancá A (eds) Microinjection and transgenesis: strategies and protocol. Springer-Verlag, Berlin, pp 561–586Google Scholar
  2. Bodrogi L, Brands R, Raaben W, Seinen W, Baranyi M, Fiechter D, Bosze Z (2006) High level expression of tissue-nonspecific alkaline phosphatase in the milk of transgenic rabbits. Transgenic Res 15(5):627–636CrossRefPubMedGoogle Scholar
  3. Bosze Z, Houdebine L-M (2006) Application of rabbits in biomedical research: a review. World Rabbit Sci 14:1–14Google Scholar
  4. Cutino-Moguel T, Fassati A (2006) A phenotypic recessive, post-entry block in rabbit cells that results in aberrant trafficking of HIV-1. Traffic 7(8):978–992CrossRefPubMedGoogle Scholar
  5. Derdouch S, Gay W, Negre D, Prost S, Le Dantec M, Delache B, Auregan G, Andrieu T, Leplat JJ, Cosset FL, Le Grand R (2008) Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34+ bone marrow cells, following gamma irradiation in cynomolgus macaques. Retrovirology 5:50CrossRefPubMedGoogle Scholar
  6. Graur D, Duret L, Gouy M (1996) Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379(6563):333–335CrossRefPubMedGoogle Scholar
  7. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683CrossRefPubMedGoogle Scholar
  8. Hiripi L, Makovics F, Halter R, Baranyi M, Paul D, Carnwath JW, Bosze Z, Niemann H (2003) Expression of active human blood clotting factor VIII in mammary gland of transgenic rabbits. DNA Cell Biol 22(1):41–45CrossRefPubMedGoogle Scholar
  9. Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J (1999) Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 73(12):10020–10028PubMedGoogle Scholar
  10. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4(11):1054–1060CrossRefPubMedGoogle Scholar
  11. Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, Wolf E, Pfeifer A (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod 71(2):405–409CrossRefPubMedGoogle Scholar
  12. Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E, Pfeifer A (2006) Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther 13(1):59–66CrossRefPubMedGoogle Scholar
  13. Kvell K, Nguyen TH, Salmon P, Glauser F, Werner-Favre C, Barnet M, Schneider P, Trono D, Zubler RH (2005) Transduction of CpG DNA-stimulated primary human B cells with bicistronic lentivectors. Mol Ther 12(5):892–899CrossRefPubMedGoogle Scholar
  14. Kvell K, Czompoly T, Hiripi L, Balogh P, Kobor J, Bodrogi L, Pongracz JE, Ritchie WA, Bosze Z (2010) Characterisation of eGFP-transgenic BALB/c mouse strain established by lentiviral transgenesis. Transgenic Res 19(1):105–112Google Scholar
  15. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872CrossRefPubMedGoogle Scholar
  16. McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5(7):728–733CrossRefPubMedGoogle Scholar
  17. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267CrossRefPubMedGoogle Scholar
  18. Negre D, Cosset FL (2002) Vectors derived from simian immunodeficiency virus (SIV). Biochimie 84(11):1161–1171CrossRefPubMedGoogle Scholar
  19. Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, Winter AJ, Rabourdin-Combe C, Mehtali M, Moullier P, Darlix JL, Cosset FL (2000) Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 7(19):1613–1623CrossRefPubMedGoogle Scholar
  20. Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31(2):159–173CrossRefPubMedGoogle Scholar
  21. Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99(4):2140–2145CrossRefPubMedGoogle Scholar
  22. Ritchie WA, Neil C, King T, Whitelaw CB (2007) Transgenic embryos and mice produced from low titre lentiviral vectors. Transgenic Res 16(5):661–664CrossRefPubMedGoogle Scholar
  23. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459(7246):523–U550CrossRefPubMedGoogle Scholar
  24. Shen W, Li L, Pan Q, Min L, Dong H, Deng J (2006) Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol Reprod Dev 73(5):589–594CrossRefPubMedGoogle Scholar
  25. Sultana F, Hatori M, Shimozawa N, Ebisawa T, Sankai T (2009) Continuous observation of rabbit preimplantation embryos in vitro by using a culture device connected to a microscope. J Am Assoc Lab Anim Sci 48(1):52–56PubMedGoogle Scholar
  26. Takahashi R, Kuramochi T, Aoyagi K, Hashimoto S, Miyoshi I, Kasai N, Hakamata Y, Kobayashi E, Ueda M (2007) Establishment and characterization of CAG/EGFP transgenic rabbit line. Transgenic Res 16(1):115–120CrossRefPubMedGoogle Scholar
  27. Whitelaw CB, Radcliffe PA, Ritchie WA, Carlisle A, Ellard FM, Pena RN, Rowe J, Clark AJ, King TJ, Mitrophanous KA (2004) Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett 571(1–3):233–236CrossRefPubMedGoogle Scholar
  28. Witschi E (1956) Development of vertebrates. Saunders W.B, PhiladelphiaGoogle Scholar
  29. Wolfgang MJ, Eisele SG, Browne MA, Schotzko ML, Garthwaite MA, Durning M, Ramezani A, Hawley RG, Thomson JA, Golos TG (2001) Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc Natl Acad Sci USA 98(19):10728–10732CrossRefPubMedGoogle Scholar
  30. Zaitseva L, Cherepanov P, Leyens L, Wilson SJ, Rasaiyaah J, Fassati A (2009) HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome. Retrovirology 6:11CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • L. Hiripi
    • 1
  • D. Negre
    • 2
  • F.-L. Cosset
    • 2
  • K. Kvell
    • 3
  • T. Czömpöly
    • 3
  • M. Baranyi
    • 1
  • E. Gócza
    • 1
  • O. Hoffmann
    • 1
  • B. Bender
    • 1
  • Zs. Bősze
    • 1
  1. 1.Genetic Modification Program Group, Agricultural Biotechnology CenterGödöllőHungary
  2. 2.Inserm, U758, Human Virology Department Université de Lyon, Ecole Normale Supérieure de LyonLyonFrance
  3. 3.Department of Immunology and BiotechnologyUniversity of PécsPecsHungary

Personalised recommendations