Skip to main content
Log in

Functional characterization of a tobacco matrix attachment region-mediated enhancement of transgene expression

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

TM2, a new matrix attachment region (MAR) isolated from tobacco, increases transgene expression in plants. We have carried out a more detailed analysis of the DNA elements in TM2 with the aim of improving its effect on transcription activation. Our study of the location effect of individual MARs on the expression of the adjacent 35S:gusA cassette indicated that the TM2 functions in a bidirectional manner, with the 5′-MAR being more efficient in enhancing β-glucuronidase expression than the 3′-MAR. The influence of 5′-MAR on different linked mini-promoters in transgenic tobacco cells suggested that the role of TM2 depends on the basic expression of the transgenes. Deletion analysis of one topo II site and two unwinding sites together with one T-box revealed that all these sites contribute most (93.3%) of the transcription activation mediated from the TM2 sequence. Additionally, micrococcal nuclease accessibility of the 35S promoter region can be strengthened by linked TM2, suggesting that the TM2 mediates the spreading of nucleosome opening. Taken together, our results reveal that the TM2 mediates a more open and accessible chromatin DNA structure for promoter-dependent active transcription, which in turn enhances transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376. doi:10.1023/A:1006424621037

    Article  PubMed  CAS  Google Scholar 

  • Avramova Z, Sanmiguel P, Georgieva E, Bennetzen JL (1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell 7:1667–1680

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9:1685–1696

    PubMed  CAS  Google Scholar 

  • Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shgematsu T (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255:195–197. doi:10.1126/science.1553545

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Vanmontagu M, Depicker A, Gheysen G (1992) Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell 4:463–471

    Article  PubMed  CAS  Google Scholar 

  • De Bolle MFC, Butaye KMJ, Coucke WJW, Goderis IJWM, Wouters PFJ, van Boxel N, Broekaert WF, Cammue BPA (2003) Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci 165:169–179. doi:10.1016/S0168-9452(03)00156-0

    Article  Google Scholar 

  • Fiorini A, Gouveia Fde S, Fernandez MA (2006) Scaffold/matrix attachment regions and intrinsic DNA curvature. Biochemistry (Mosc) 71:481–488. doi:10.1134/S0006297906050038

    Article  CAS  Google Scholar 

  • Fukuda Y (1999) Characterization of matrix attachment sites in the upstream region of a tobacco chitinase gene. Plant Mol Biol 39:1051–1062. doi:10.1023/A:1006133003283

    Article  PubMed  CAS  Google Scholar 

  • Fukuda Y, Nishikawa S (2003) Matrix attachment regions enhance transcription of a downstream transgene and the accessibility of its promoter region to micrococcal nuclease. Plant Mol Biol 51:665–675. doi:10.1023/A:1022509909838

    Article  PubMed  CAS  Google Scholar 

  • Hall GEJ, Allen GC, Loer DC, Thompson WF, Spiker S (1991) Nuclear scaffold and scaffold-attachment regions in higher plants. Proc Natl Acad Sci USA 88:9320–9324. doi:10.1073/pnas.88.20.9320

    Article  PubMed  CAS  Google Scholar 

  • Halweg C, Thompson WF, Spiker S (2005) The Rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tabacco cells: a flow cytometrix study. Plant Cell 17:418–429. doi:10.1105/tpc.104.028100

    Article  PubMed  CAS  Google Scholar 

  • Heng HH, Goetze S, Ye CJ, Guo L, Stevens JB, Bremer SW, Wykes SM, Bode J, Krawetz SA (2004) Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J Cell Sci 117:999–1008. doi:10.1242/jcs.00976

    Article  PubMed  CAS  Google Scholar 

  • Heng HH, Krawetz SA, Lu W, Bremer S, Liu G, Ye CJ (2001) Re-defining the chromatin loop domain. Cytogenet Cell Genet 93:155–161. doi:10.1159/000056977

    Article  PubMed  CAS  Google Scholar 

  • Holmes-Davis R, Comai L (2002) The matrix attachment regions (MARs) associated with the heat shock cognate 80 gene (HSC80) of tomato represent specific regulatory elements. Mol Genet Genomics 266:891–898. doi:10.1007/s00438-001-0613-x

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405. doi:10.1007/BF02667740

    Article  CAS  Google Scholar 

  • Jeneke AC, Stehle IM, Herrmann F, Eisenberger T, Baiker A, Bode J, Fackelmayer FQ, Lipps HJ (2004) Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci USA 101:11322–11327. doi:10.1073/pnas.0401355101

    Article  Google Scholar 

  • Käs E, Poljak L, Adachi Y, Laemmli UK (1993) A model for chromatin opening: stimulation of topoisomerase II and restriction enzyme cleavage of chromatin by distamycin. EMBO J 12:115–126

    PubMed  Google Scholar 

  • Larovaia OV, Akopov SB, Nikolaev LG, Sverdlov ED, Razin SV (2005) Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix. Nucleic Acids Res 33:4157–4163. doi:10.1093/nar/gki733

    Article  Google Scholar 

  • Liebich I, Bode J, Frisch M, Wingender E (2002) S/MARt DB: a database on scaffold/matrix attached regions. Nucleic Acids Res 30:372–374. doi:10.1093/nar/30.1.372

    Article  PubMed  CAS  Google Scholar 

  • Mirkovitch J, Mirault ME, Laemmli UK (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39:223–232. doi:10.1016/0092-8674(84)90208-3

    Article  PubMed  CAS  Google Scholar 

  • Montazer-Torbati MB, Hue-Beauvais C, Droineau S, Ballester M, Coant N, Aujean E, Petitbarat M, Rijnkels M, Devinoy E (2008) Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes. Exp Cell Res 314:975–987. doi:10.1016/j.yexcr.2008.01.001

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the Hela-cell in the cell biology of higher plants. Int Rev Cytol 132:1–30. doi:10.1016/S0074-7696(08)62452-3

    Article  CAS  Google Scholar 

  • Namciu SJ, Blochlinger KB, Fournier REK (1998) Human matrix attachment regions insulate transgene expression from chromosomal position effects in Drosophila melanogaster. Mol Cell Biol 18:2382–2391

    PubMed  CAS  Google Scholar 

  • Oh SJ, Jeong JS, Kim EH, Yi NR, Yi SI, Jang IC, Kim YS, Suh SC, Nahm BH, Kim JK (2005) Matrix attachment region from the chicken lysozyme locus reduces variability in transgene expression and confers copy number-dependence in transgenic rice plants. Plant Cell Rep 24:145–154. doi:10.1007/s00299-005-0915-2

    Article  PubMed  CAS  Google Scholar 

  • Orphanides G, Reinberg D (2000) RNA polymerase II elongation through chromatin. Nature 407:471–475. doi:10.1038/35035000

    Article  PubMed  CAS  Google Scholar 

  • Rao S, Procko E, Shannon MF (2001) Chromatin remodelling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene. J Immunol 167:4494–4503

    PubMed  CAS  Google Scholar 

  • Ronai D, Berru M, Shulman MJ (1999) Variegated expression of the endogenous immunoglobulin heavy-chain gene in the absence of the intronic locus control region. Mol Cell Biol 19:7031–7040

    PubMed  CAS  Google Scholar 

  • Sidorenko L, Bruce W, Maddock S, Tagliani L, Li X, Daniels M, Peterson T (2003) Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Res 12:137–154. doi:10.1023/A:1022908614356

    Article  PubMed  CAS  Google Scholar 

  • van der Geest AHM, Hall TC (1997) The β-phaseolin 5′ matrix attachment region acts as an enhancer facilitator. Plant Mol Biol 33:553–557. doi:10.1023/A:1005765525436

    Article  PubMed  Google Scholar 

  • van der Geest AHM, Hall GEJ, Spiker S, Hall TC (1994) The β-phaseolin is flanked by matrix attachment regions. Plant J 6:413–423. doi:10.1046/j.1365-313X.1994.06030413.x

    Article  Google Scholar 

  • Xue H, Yang YT, Wu CA, Yang GD, Zhang MM, Zheng CC (2005) TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theor Appl Genet 110:620–627. doi:10.1007/s00122-004-1880-9

    Article  PubMed  CAS  Google Scholar 

  • Yang YT, Yang GD, Liu SJ, Guo XQ, Zheng CC (2003) Isolation and functional analysis of a strong specific promoter in photosynthetic tissues. Sci China C Life Sci 46:651–660. doi:10.1360/02yc0161

    Article  PubMed  CAS  Google Scholar 

  • Yasui D, Miyano M, Cai S, Varga-Weisz P, Kowhi-Shigematsu T (2002) SATB1 targets chromatin remodeling to regulate genes over long distances. Nature 419:641–645. doi:10.1038/nature01084

    Article  PubMed  CAS  Google Scholar 

  • Zhang MM, Ji LS, Xue H, Yang YT, Wu CA, Zheng CC (2007) High transformation frequency of tobacco and rice via Agrobacterium-mediated gene transfer by flanking a tobacco matrix attachment region. Physiol Plant 120:644–651. doi:10.1111/j.1399-3054.2006.00779.x

    Article  Google Scholar 

  • Zhao K, Kas E, Gonzalez E, Laemmli UK (1993) SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J 12:3237–3247

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program (Grant No. 2006CB1001006), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0635) and The Early Stage of China Key Development Project for Basic Research (Grant No. 2007CB116208) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengchao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Lu, L., Ji, L. et al. Functional characterization of a tobacco matrix attachment region-mediated enhancement of transgene expression. Transgenic Res 18, 377–385 (2009). https://doi.org/10.1007/s11248-008-9230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-008-9230-3

Keywords

Navigation