Transgenic Research

, Volume 18, Issue 1, pp 7–15 | Cite as

Accelerated ageing: from mechanism to therapy through animal models

  • Fernando G. Osorio
  • Álvaro J. Obaya
  • Carlos López-Otín
  • José M. P. Freije


Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.


Proteases Tumor suppression Cancer Isoprenylation Alternative splicing Stem cell 


  1. Agarwal AK, Fryns JP, Auchus RJ, Garg A (2003) Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet 12:1995–2001. doi:10.1093/hmg/ddg213 PubMedCrossRefGoogle Scholar
  2. Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA 99:13049–13054. doi:10.1073/pnas.192460799 PubMedCrossRefGoogle Scholar
  3. Cadinanos J, Schmidt WK, Fueyo A, Varela I, Lopez-Otin C, Freije JM (2003) Identification, functional expression and enzymic analysis of two distinct CaaX proteases from Caenorhabditis elegans. Biochem J 370:1047–1054. doi:10.1042/BJ20021514 PubMedCrossRefGoogle Scholar
  4. Cadinanos J, Varela I, Lopez-Otin C, Freije JM (2005) From immature lamin to premature aging: molecular pathways and therapeutic opportunities. Cell Cycle 4:1732–1735PubMedGoogle Scholar
  5. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. doi:10.1016/j.cell.2005.02.003 PubMedCrossRefGoogle Scholar
  6. Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS (2005) Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 102:12879–12884. doi:10.1073/pnas.0506001102 PubMedCrossRefGoogle Scholar
  7. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882. doi:10.1038/ng1389 PubMedCrossRefGoogle Scholar
  8. Cox LS, Faragher RG (2007) From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 64:2620–2641. doi:10.1007/s00018-007-7123-x PubMedCrossRefGoogle Scholar
  9. Davies BS, Yang SH, Farber E, Lee R, Buck SB, Andres DA, Peter Spielmann H, Agnew BJ, Tamanoi F, Fong LG, Young SG (2008) Increasing the length of progerin’s isoprenyl anchor does not worsen bone disease or survival in mice with Hutchinson-Gilford progeria syndrome. J Lipid Res. doi:10.1194/jlr.M800424-JLR200 Google Scholar
  10. de Carlos F, Varela I, Germana A, Montalbano G, Freije J, Vega J, López-Otin C, Cobo J (2008) Microcephalia with mandibular and dental dysplasia in adult Zmpste24 deficient mice. J Anat 213:509–519. doi:10.1111/j.1469-7580.2008.00970.x PubMedGoogle Scholar
  11. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300:2055. doi:10.1126/science.1084125 PubMedCrossRefGoogle Scholar
  12. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298. doi:10.1038/nature01629 PubMedCrossRefGoogle Scholar
  13. Espada J, Varela I, Flores I, Ugalde AP, Cadinanos J, Pendas AM, Stewart CL, Tryggvason K, Blasco MA, Freije JM, Lopez-Otin C (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181:27–35. doi:10.1083/jcb.200801096 PubMedCrossRefGoogle Scholar
  14. Fong LG, Ng JK, Meta M, Cote N, Yang SH, Stewart CL, Sullivan T, Burghardt A, Majumdar S, Reue K, Bergo MO, Young SG (2004) Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci USA 101:18111–18116. doi:10.1073/pnas.0408558102 PubMedCrossRefGoogle Scholar
  15. Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG (2006a) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–1623. doi:10.1126/science.1124875 PubMedCrossRefGoogle Scholar
  16. Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Cote N, Gavino B, Qiao X, Chang SY, Young SR, Yang SH, Stewart CL, Lee RT, Bennett CF, Bergo MO, Young SG (2006b) Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J Clin Invest 116:743–752. doi:10.1172/JCI27125 PubMedCrossRefGoogle Scholar
  17. Freije JM, Blay P, Pendas AM, Cadinanos J, Crespo P, Lopez-Otin C (1999) Identification and chromosomal location of two human genes encoding enzymes potentially involved in proteolytic maturation of farnesylated proteins. Genomics 58:270–280. doi:10.1006/geno.1999.5834 PubMedCrossRefGoogle Scholar
  18. Glynn MW, Glover TW (2005) Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 14:2959–2969. doi:10.1093/hmg/ddi326 PubMedCrossRefGoogle Scholar
  19. Hennekam RC (2006) Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140:2603–2624. doi:10.1002/ajmg.a.31346 PubMedGoogle Scholar
  20. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447. doi:10.1016/j.cell.2005.01.027 PubMedCrossRefGoogle Scholar
  21. Kumagai H, Kawamura Y, Yanagisawa K, Komano H (1999) Identification of a human cDNA encoding a novel protein structurally related to the yeast membrane-associated metalloprotease, Ste24p. Biochim Biophys Acta 1426:468–474PubMedGoogle Scholar
  22. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785. doi:10.1038/nm1266 PubMedCrossRefGoogle Scholar
  23. Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649. doi:10.1242/jcs.03263 PubMedCrossRefGoogle Scholar
  24. Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J, Bronson R, Buhlmann JE, Lipman R, Curry R, Sharpe A, Jaenisch R, Guarente L (2000) Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 20:3286–3291. doi:10.1128/MCB.20.9.3286-3291.2000 PubMedCrossRefGoogle Scholar
  25. Mallampalli MP, Huyer G, Bendale P, Gelb MH, Michaelis S (2005) Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 102:14416–14421. doi:10.1073/pnas.0503712102 PubMedCrossRefGoogle Scholar
  26. Marino G, Lopez-Otin C (2008) Autophagy and aging: new lessons from progeroid mice. Autophagy 4:807–809PubMedGoogle Scholar
  27. Marino G, Ugalde AP, Salvador-Montoliu N, Varela I, Quiros PM, Cadinanos J, van der Pluijm I, Freije JM, Lopez-Otin C (2008) Premature aging in mice activates a systemic metabolic response involving autophagy induction. Hum Mol Genet 17:2196–2211. doi:10.1093/hmg/ddn120 PubMedCrossRefGoogle Scholar
  28. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604. doi:10.1056/NEJMoa0706898 PubMedCrossRefGoogle Scholar
  29. Mijimolle N, Velasco J, Dubus P, Guerra C, Weinbaum CA, Casey PJ, Campuzano V, Barbacid M (2005) Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell 7:313–324. doi:10.1016/j.ccr.2005.03.004 PubMedCrossRefGoogle Scholar
  30. Multani AS, Chang S (2007) WRN at telomeres: implications for aging and cancer. J Cell Sci 120:713–721. doi:10.1242/jcs.03397 PubMedCrossRefGoogle Scholar
  31. Navarro CL, Cadinanos J, De Sandre-Giovannoli A, Bernard R, Courrier S, Boccaccio I, Boyer A, Kleijer WJ, Wagner A, Giuliano F, Beemer FA, Freije JM, Cau P, Hennekam RC, Lopez-Otin C, Badens C, Levy N (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of lamin A precursors. Hum Mol Genet 14:1503–1513. doi:10.1093/hmg/ddi159 PubMedCrossRefGoogle Scholar
  32. Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K, Lopez-Otin C (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31:94–99PubMedGoogle Scholar
  33. Pereira S, Bourgeois P, Navarro C, Esteves-Vieira V, Cau P, De Sandre-Giovannoli A, Levy N (2008) HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mech Ageing Dev 129:449–459. doi:10.1016/j.mad.2008.04.003 PubMedCrossRefGoogle Scholar
  34. Ramirez CL, Cadinanos J, Varela I, Freije JM, Lopez-Otin C (2007) Human progeroid syndromes, aging and cancer: new genetic and epigenetic insights into old questions. Cell Mol Life Sci 64:155–170. doi:10.1007/s00018-006-6349-3 PubMedCrossRefGoogle Scholar
  35. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086. doi:10.1038/nature04958 PubMedCrossRefGoogle Scholar
  36. Sagelius H, Rosengardten Y, Hanif M, Erdos MR, Rozell B, Collins FS, Eriksson M (2008a) Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease. J Cell Sci 121:969–978. doi:10.1242/jcs.022913 PubMedCrossRefGoogle Scholar
  37. Sagelius H, Rosengardten Y, Schmidt E, Sonnabend C, Rozell B, Eriksson M (2008b) Reversible phenotype in a mouse model of Hutchinson-Gilford progeria syndrome. J Med Genet. doi:10.1136/jmg.2008.060772 PubMedGoogle Scholar
  38. Sander CS, Salman N, van Geel M, Broers JL, Al-Rahmani A, Chedid F, Hausser I, Oji V, Al Nuaimi K, Berger TG, Verstraeten VL (2008) A newly identified splice site mutation in ZMPSTE24 causes restrictive dermopathy in the middle East. Br J Dermatol 159:961–967. doi:10.1111/j.1365-2133.2008.08772.x PubMedCrossRefGoogle Scholar
  39. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11:440–445. doi:10.1038/nm1204 PubMedCrossRefGoogle Scholar
  40. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063. doi:10.1126/science.1127168 PubMedCrossRefGoogle Scholar
  41. Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459. doi:10.1038/ncb1708 PubMedCrossRefGoogle Scholar
  42. Shackleton S, Smallwood DT, Clayton P, Wilson LC, Agarwal AK, Garg A, Trembath RC (2005) Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype. J Med Genet 42:e36. doi:10.1136/jmg.2004.029751 PubMedCrossRefGoogle Scholar
  43. Tam A, Nouvet FJ, Fujimura-Kamada K, Slunt H, Sisodia SS, Michaelis S (1998) Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol 142:635–649. doi:10.1083/jcb.142.3.635 PubMedCrossRefGoogle Scholar
  44. Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG (2005) Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci USA 102:12873–12878. doi:10.1073/pnas.0505767102 PubMedCrossRefGoogle Scholar
  45. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA, Tryggvason K, Freije JM, Lopez-Otin C (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437:564–568. doi:10.1038/nature04019 PubMedCrossRefGoogle Scholar
  46. Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J, de Carlos F, Levy N, Freije JM, Lopez-Otin C (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 14:767–772. doi:10.1038/nm1786 PubMedCrossRefGoogle Scholar
  47. Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, Capell BC, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon LB, Virmani R, Wight TN, Nabel EG, Collins FS (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 103:3250–3255. doi:10.1073/pnas.0600012103 PubMedCrossRefGoogle Scholar
  48. Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071. doi:10.1038/nature07216 PubMedCrossRefGoogle Scholar
  49. Wang Y, Panteleyev AA, Owens DM, Djabali K, Stewart CL, Worman HJ (2008) Epidermal expression of the truncated prelamin A causing Hutchinson-Gilford progeria syndrome: effects on keratinocytes, hair and skin. Hum Mol Genet 17:2357–2369. doi:10.1093/hmg/ddn136 PubMedCrossRefGoogle Scholar
  50. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272:14459–14464. doi:10.1074/jbc.272.22.14459 PubMedCrossRefGoogle Scholar
  51. Willis ND, Cox TR, Rahman-Casans SF, Smits K, Przyborski SA, van den Brandt P, van Engeland M, Weijenberg M, Wilson RG, de Bruine A, Hutchison CJ (2008) Lamin A/C is a risk biomarker in colorectal cancer. PLoS ONE 3:e2988. doi:10.1371/journal.pone.0002988 PubMedCrossRefGoogle Scholar
  52. Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, Meta M, Bendale P, Gelb MH, Young SG, Fong LG (2005) Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci USA 102:10291–10296. doi:10.1073/pnas.0504641102 PubMedCrossRefGoogle Scholar
  53. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121. doi:10.1172/JCI28968 PubMedCrossRefGoogle Scholar
  54. Yang SH, Andres DA, Spielmann HP, Young SG, Fong LG (2008a) Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest 118:3291–3300. doi:10.1172/JCI35876 PubMedCrossRefGoogle Scholar
  55. Yang SH, Qiao X, Fong LG, Young SG (2008b) Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation. Biochim Biophys Acta 1781:36–39PubMedGoogle Scholar
  56. Young SG, Meta M, Yang SH, Fong LG (2006) Prelamin A farnesylation and progeroid syndromes. J Biol Chem 281:39741–39745. doi:10.1074/jbc.R600033200 PubMedCrossRefGoogle Scholar
  57. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262. doi:10.1126/science.272.5259.258 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Fernando G. Osorio
    • 1
  • Álvaro J. Obaya
    • 2
  • Carlos López-Otín
    • 1
  • José M. P. Freije
    • 1
  1. 1.Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de OncologíaUniversidad de OviedoOviedoSpain
  2. 2.Departamento de Biología Funcional (Fisiología), Facultad de Medicina, Instituto Universitario de OncologíaUniversidad de OviedoOviedoSpain

Personalised recommendations