Skip to main content

Advertisement

Log in

Prnp knockdown in transgenic mice using RNA interference

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

RNA interference has become a widely used approach to perform gene knockdown experiments in cell cultures and more recently transgenic animals. A designed miRNA targeting the prion protein mRNA was built and expressed using the human PRNP promoter. Its efficiency was confirmed in transfected cells and it was used to generate several transgenic mouse lines. Although expressed at low levels, it was found to downregulate the endogenous mouse Prnp gene expression to an extent that appears to be directly related with the transgene expression level and that could reach up to 80% inhibition. This result highlights the potential and limitations of the RNA interference approach when applied to disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5 

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

dsRNA1:

Double-stranded RNA

miRNA:

Micro RNA

PrPC :

Cellular PrP protein

pre-miRNA:

Precursor of miRNA

RNAi:

RNA interference

siRNA:

Small interfering RNA

shRNA:

Short hairpin RNA

References

  • Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  PubMed  CAS  Google Scholar 

  • Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C, Le Dur A, Vilette D, Baron-Van Evercooren A, Vilotte JL, Laude H (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78:482–490

    Article  PubMed  CAS  Google Scholar 

  • Asante EA, Gowland I, Linehan JM, Mahal SP, Collinge J (2002) Expression pattern of a mini human PrP gene promoter in transgenic mice. Neurobiol Dis 10:1–7

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  PubMed  CAS  Google Scholar 

  • Beringue V, Mallinson G, Kaisar M, Tayebi M, Sattar Z, Jackson G, Anstee D, Collinge J, Hawke S (2003) Regional heterogeneity of cellular prion protein isoforms in the mouse brain. Brain 126:2065–2073

    Article  PubMed  Google Scholar 

  • Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582

    Article  PubMed  CAS  Google Scholar 

  • Coumoul X, Shukla V, Li C, Wang RH, Deng CX (2005) Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 33:e102

    Article  PubMed  CAS  Google Scholar 

  • Daude N, Marella M, Chabry J (2003) Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J Cell Sci 116:2775–2779

    Article  PubMed  CAS  Google Scholar 

  • Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, Lowe SW (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37:1289–1295

    PubMed  CAS  Google Scholar 

  • Dormont D (2002) Prions, BSE and food. Int J Food Microbiol 78:181–189

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 20:6877–6888

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. Embo J 15:1255–1264

    PubMed  CAS  Google Scholar 

  • Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME (2006) Suppression of prion protein in livestock by RNA interference. Proc Natl Acad Sci USA 103:5285–5290

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    Article  PubMed  CAS  Google Scholar 

  • Holen T, Moe SE, Sorbo JG, Meza TJ, Ottersen OP, Klungland A (2005) Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo. Nucleic Acids Res 33:4704–4710

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  PubMed  CAS  Google Scholar 

  • Johnson RT (2005) Prion diseases. Lancet Neurol 4:635–642

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Hisajima S, Stougaard J, Ichikawa H (1995) A conditional negative selection for Arabidopsis expressing a bacterial cytosine deaminase gene. Jpn J Genet 70:409–422

    Article  PubMed  CAS  Google Scholar 

  • Krasemann S, Groschup MH, Harmeyer S, Hunsmann G, Bodemer W (1996) Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice. Mol Med 2:725–734

    PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  • Lathe R, Vilotte JL, Clark AJ (1987) Plasmid and bacteriophage vectors for excision of intact inserts. Gene 57:193–201

    Article  PubMed  CAS  Google Scholar 

  • Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505

    PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mallucci G, Collinge J (2005) Rational targeting for prion therapeutics. Nat Rev Neurosci 6:23–34

    Article  PubMed  CAS  Google Scholar 

  • Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874

    Article  PubMed  CAS  Google Scholar 

  • Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335

    Article  PubMed  CAS  Google Scholar 

  • Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8:121–127

    Article  PubMed  CAS  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  • Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  PubMed  CAS  Google Scholar 

  • Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500

    Article  PubMed  CAS  Google Scholar 

  • Nunziante M, Gilch S, Schätzl HM (2003) Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein. J Biol Chem 728:3726–3734

    Article  CAS  Google Scholar 

  • Oberdoerffer P, Kanellopoulou C, Heissmeyer V, Paeper C, Borowski C, Aifantis I, Rao A, Rajewsky K (2005) Efficiency of RNA interference in the mouse hematopoietic system varies between cell types and developmental stages. Mol Cell Biol 25:3896–3905

    Article  PubMed  CAS  Google Scholar 

  • Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  • Peng S, York JP, Zhang P (2006) A transgenic approach for RNA interference-based genetic screening in mice. Proc Natl Acad Sci USA 103:2252–2256

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A, Eigenbrod S, Al-Khadra S, Hofmann A, Mitteregger G, Moser M, Bertsch U, Kretzschmar H (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest 116:3204–3210

    Article  PubMed  CAS  Google Scholar 

  • Rao MK, Wilkinson MF (2006) Tissue-specific and cell type-specific RNA interference in vivo. Nat Protoc 1:1494–1501

    Article  PubMed  CAS  Google Scholar 

  • Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, Henderson CE, Aebischer P (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11:423–428

    Article  PubMed  CAS  Google Scholar 

  • Safar JG, DeArmond SJ, Kociuba K, Deering C, Didorenko S, Bouzamondo-Bernstein E, Prusiner SB, Tremblay P (2005) Prion clearance in bigenic mice. J Gen Virol 86:2913–2923

    Article  PubMed  CAS  Google Scholar 

  • Samakoglu S, Lisowski L, Budak-Alpdogan T, Usachenko Y, Acuto S, Di Marzo R, Maggio A, Zhu P, Tisdale JF, Riviere I, Sadelain M (2006) A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat Biotechnol 24:89–94

    Article  PubMed  CAS  Google Scholar 

  • Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101:1892–1897

    Article  PubMed  CAS  Google Scholar 

  • Seibler J, Kuter-Luks B, Kern H, Streu S, Plum L, Mauer J, Kuhn R, Bruning JC, Schwenk F (2005) Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res 33:e67

    Article  PubMed  Google Scholar 

  • Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time. PCR BioTechniques 39:519–525

    CAS  Google Scholar 

  • Shinagawa T, Ishii S (2003) Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev 17:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, Hannon GJ (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288

    PubMed  CAS  Google Scholar 

  • Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99:5515–5520

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Melegari M, Sridhar S, Rogler CE, Zhu L (2006) Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques 41:59–63

    Article  PubMed  CAS  Google Scholar 

  • Tilly G, Chapuis J, Vilette D, Laude H, Vilotte JL (2003) Efficient and specific down-regulation of prion protein expression by RNAi. Biochem Biophys Res Commun 305:548–551

    Article  PubMed  CAS  Google Scholar 

  • Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, Laude H (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci USA 98:4055–4059

    Article  PubMed  CAS  Google Scholar 

  • Vilotte JL, Soulier S, Essalmani R, Stinnakre MG, Vaiman D, Lepourry L, Da Silva JC, Besnard N, Dawson M, Buschmann A, Groschup M, Petit S, Madelaine MF, Rakatobe S, Le Dur A, Vilette D, Laude H (2001) Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine prp. J Virol 75:5977–5984

    Article  PubMed  CAS  Google Scholar 

  • Weissmann C, Enari M, Klohn PC, Rossi D, Flechsig E (2002) Transmission of prions. Proc Natl Acad Sci USA 99(Suppl 4):16378–16383

    Article  PubMed  CAS  Google Scholar 

  • Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77:8957–8961

    Article  PubMed  CAS  Google Scholar 

  • Xia XG, Zhou H, Samper E, Melov S, Xu Z (2006) Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice PLoS. Genet 2:e10

    Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9:112–123

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are most grateful to Dr. J. Collinge (National Hospital for Neurology and Neurosurgery, London, UK) for the kind gift of the pMG5 plasmid, to Prof. Bujard (ZMBH, Heidelberg, Germany) for that of pUHD 10.3. Micaela Gallozzi is a Ph.D student supported by the European Community RIVAGE Marie Curie Action. This work was partially supported by the ANR-05, GenAnimal VecteurshRNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Vilotte.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallozzi, M., Chapuis, J., Le Provost, F. et al. Prnp knockdown in transgenic mice using RNA interference. Transgenic Res 17, 783–791 (2008). https://doi.org/10.1007/s11248-008-9179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-008-9179-2

Keywords