Skip to main content

Advertisement

Log in

Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Nicotiana glauca is a tobacco species that forms flowers with carotenoid-pigmented petals, sepals, pistil, ovary and nectary tissue. The carotenoids produced are lutein, ß-carotene as well as some violaxanthin and antheraxanthin. This tobacco species was genetically modified for ketocarotenoid biosynthesis by transformation with a cyanobacterial crtO ketolase gene under the 35S CaMV promoter. In the transformants, ketocarotenoids were detected in both leaves and flowers. Although astaxanthin was not detected other ketocarotenoids such as 4′-ketolutein, echinenone, 3′-hydroxyechinenone and 4-ketozeaxanthin were present. Accumulation of ketocarotenoids in leaves decreased their photosynthetic efficiency moderately. Under the green house conditions used no impairment of growth and development compared to the wild type was observed. In the crtO-transformants, an unexpected up-regulation of total carotenoid biosynthesis in leaves and especially in flower petals was observed. This led to a total ketocarotenoid concentration in leaves of 136.6 (young) or 156.1 (older) μg/g dry weight and in petals of 165 μg/g dry weight. In our engineered plants, the ketocarotenoid pathway is one step short of astaxanthin. Strategies are discussed to improve N. glauca flowers as a biological system for astaxanthin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Misawa N, Kajiwara S, Sandmann G (1996) Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol Lett 140:241–246

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Matsuda S, Hoshino T, Peng X, Misawa N (2006) Characterization of bacterial β-carotene 3,3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adinorubin production by gene combination in Escherichia coli. Appl Microbiol Biotechnol 72:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  Google Scholar 

  • Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry of plant pigments. Academic Press, London

    Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Eugster CH (1995) Chemical derivatization: microscale tests for the presence of common functional groups in carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: isolation and analysis, vol 1A. Birkhäuser Verlag, Basel

    Google Scholar 

  • Fernandez-Gonzalez B, Sandmann G, Vioque A (1997) A new type of asymmetrically acting beta-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 272:9728–9733

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Shimada H, Misawa N (1998) Enzymic confirmation of reactions involved in routes to astaxanthin formation elucidated using a direct substrate in vitro assay. Eur J Biochem 252:229–236

    Article  CAS  PubMed  Google Scholar 

  • Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645

    Article  CAS  PubMed  Google Scholar 

  • Gerjets T, Sandmann M, Zhu C, Sandmann G (2007) Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotechnol J (Epub ahead of print)

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci E (2002) Lycopene and prostate cancer risk. Methodological considerations in the epidemiologic literature. Pure Appl Chem 74:1427–1434

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SD, Fraley RT (1985) A simple and general method for transferring genes to plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

    Article  CAS  PubMed  Google Scholar 

  • Landrum JT, Bone AR (2001) Lutein, zeaxanthin and the macular pigment. Arch Biochem Biophys 385:28–40

    Article  CAS  PubMed  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions, J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892

    Article  CAS  PubMed  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A et al (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic. J Bacteriol 177:6575–6584

    CAS  PubMed  Google Scholar 

  • Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263

    Article  CAS  PubMed  Google Scholar 

  • Ojima K, Breitenbach J, Visser H, Setoguchi Y et al (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Gen Genet 275:148–158

    CAS  Google Scholar 

  • Ralley L, Enfissi EM, Misawa N, Schuch W et al (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39:477–486

    Article  CAS  PubMed  Google Scholar 

  • Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  PubMed  Google Scholar 

  • Rosen KM, Villa-Komaroff L (1990) An alternative method for the visualization of RNA in formaldehyde agarose gels. Focus 12:23–24

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis F (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, NY

    Google Scholar 

  • Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chem Biochem 3:629–635

    CAS  Google Scholar 

  • Sandmann G, Römer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8:291–302

    Article  CAS  PubMed  Google Scholar 

  • Seybold A, Goodwin TW (1959) Occurence of astaxanthin in the flower petals of Adonis annua L Nature 184:1714–1715

    Article  CAS  PubMed  Google Scholar 

  • Sharoni Y, Agbaria R, Amir H, Ben-Dor A et al (2003) Modulation of transcriptional activity by antioxidant carotenoids. Mol Asp Med 24:371–384

    Article  CAS  Google Scholar 

  • Stalberg K, Lindgren O, Ek B, Hoglund A (2003) Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana. Plant J 36:771–779

    Article  CAS  PubMed  Google Scholar 

  • Steiger S, Schäfer L, Sandmann G (1999) High-light upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J Photochem Photobiol B 521:14–18

    Article  Google Scholar 

  • Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep Electronically published ahead of print

  • Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partly supported by a grant from the National Natural Science Foundation of China (Grant no. 30370123) to C.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Sandmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Gerjets, T. & Sandmann, G. Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene. Transgenic Res 16, 813–821 (2007). https://doi.org/10.1007/s11248-007-9151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9151-6

Keywords

Navigation