Abstract
Major advances have been made in the use of the Cre/loxP system for conditional gene targeting in the mouse. By combining the ability of Cre recombinase to invert or excise a DNA fragment, depending upon the orientation of the flanking loxP sites, and the use of wild-type loxP and variant lox511 sites, we devised an efficient and reliable Cre-mediated genetic switch, called FLEX, through which expression of a given gene can be turned off, while expression of another one can be simultaneously turned on. We discuss how this innovative, flexible and powerful approach, which virtually adapts to any kind of site-specific recombinase (e.g., Cre and Flp recombinases), can be used to easily generate, even at high throughput and genome wide scale, many genetic modifications in a conditional manner, including those which were considered as difficult or impossible to achieve.



Similar content being viewed by others
References
Abremski K, Hoess R, Sternberg N (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32:1301–1311
Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872
Araki K, Imaizumi T, Sekimoto T, Yoshinobu K, Yoshimuta J, Akizuki M, Miura K, Araki M, Yamamura K (1999) Exchangeable gene trap using the Cre/mutated lox system. Cell Mol Biol 45:737–750
Araki K, Araki M, Yamamura K (2002) Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites. Nucleic Acids Res 30:e103
Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36:921–924
Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, Berns A, Bradley A, Brown S, Carmeliet P, Chambon P, Cox R, Davidson D, Davies K, Duboule D, Forejt J, Granucci F, Hastie N, de Angelis MH, Jackson I, Kioussis D, Kollias G, Lathrop M, Lendahl U, Malumbres M, von Melchner H, Muller W, Partanen J, Ricciardi-Castagnoli P, Rigby P, Rosen B, Rosenthal N, Skarnes B, Stewart AF, Thornton J, Tocchini-Valentini G, Wagner E, Wahli W, Wurst W (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927
Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Jorcano JL, Pirro A, Svensson M, Herken R, Sasaki T, Timpl R, Werner S, Fassler R (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J 19:3990–4003
Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28
Brocard J, Warot X, Wendling O, Messaddeq N, Vonesch JL, Chambon P, Metzger D (1997) Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc Natl Acad Sci U S A 94:14559–14563
Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262
Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292
Feng YQ, Seibler J, Alami R, Eisen A, Westerman KA, Leboulch P, Fiering S, Bouhassira EE (1999) Site-specific chromosomal integration in mammalian cells: highly efficient Cre recombinase-mediated cassette exchange. J Mol Biol 292:779–785
Forster A, Pannell R, Drynan LF, Codrington R, Daser A, Metzler M, Lobato MN, Rabbitts TH (2005) The invertor knock-in conditional chromosomal translocation mimic. Nat Methods 2:27–30
Garcia EL, Mills AA (2002) Getting around lethality with Cre-mediated excision. Semin Cell Dev Biol 13:151–158
Guenet JL (2005) The mouse genome. Genome Res 15:1729–1740
Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H, Ruiz P (2003) A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A 100:9918–9922
Kano M, Igarashi H, Saito I, Masuda M (1998) Cre-loxP-mediated DNA flip-flop in mammalian cells leading to alternate expression of retrovirally transduced genes. Biochem Biophys Res Commun 248:806–811
Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285:175–182
Kolb AF (2001) Selection-marker-free modification of the murine β-casein gene using a lox2272 site. Anal Biochem 290:260–271
Kulessa H, Hogan BL (2002) Generation of a loxP flanked bmp4loxP–lacZ allele marked by conditional lacZ expression. Genesis 32:66–68
Lam KP, Rajewsky K (1998) Rapid elimination of autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci U S A 95:13171–13175
Lauth M, Moerl K, Barski JJ, Meyer M (2000) Characterization of Cre-mediated cassette exchange after plasmid microinjection in fertilized mouse oocytes. Genesis 27:153–158
Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216:55–65
Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertenstein M, Nagy A (1999) Dev Biol 208:281–292
Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53
Martin DI, Whitelaw E (1996) The vagaries of variegating transgenes. Bioessays 18:919–923
Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods 24:71–80
Mlynarova L, Libantova J, Vrba L, Nap JP (2002) The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene 296:129–137
Montoliu L, Chavez S, Vidal M (2000) Variegation associated with lacZ in transgenic animals: a warning note. Transgenic Res 9:237–239
Moon AM, Capecchi MR (2000) Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455–459
Müller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21
Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109
Nord AS, Chang PJ, Conklin BR, Cox AV, Harper CA, Hicks GG, Huang CC, Johns SJ, Kawamoto M, Liu S, Meng EC, Morris JH, Rossant J, Ruiz P, Skarnes WC, Soriano P, Stanford WL, Stryke D, von Melchner H, Wurst W, Yamamura K, Young SG, Babbitt PC, Ferrin TE (2006) The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res 34:D642–D648
Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155
Oberdoerffer P, Otipoby KL, Maruyama M, Rajewski K (2003) Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res 31:e140
O’Gorman S, Fox DT, Wahl GM (1991) Recombinase mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355
Qu S, Rinehart C, Wu HH, Wang SE, Carter B, Xin H, Kotlikoff M, Arteaga CL (2006) Gene targeting of ErbB3 using a Cre-mediated unidirectional DNA inversion strategy. Genesis 44:477–486
Ringrose L, Chabanis S, Angrand PO, Woodroofe C, Stewart AF (1999) Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases effective DNA FLEXibility at short distances. EMBO J 18:6630–6641
Roberts CW, Leroux MM, Fleming MD, Orkin SH (2002) Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2:415–425
Samokhvalov IM, Thomson AM, Lalancette C, Liakhovitskaia A, Ure J, Medvinsky A (2006) Multifunctional reversible knockout/reporter system enabling fully functional reconstitution of the AML1/Runx1 locus and rescue of hematopoiesis. Genesis 44:115–121
Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170
Sauer B (1998) Inducible Gene targeting in mice using the Cre/lox system. Methods 14:381–392
Schnütgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21:562–565
Schnütgen F, De-Zolt S, Van Sloun P, Hollatz M, Floss T, Hansen J, Altschmied J, Seisenberger C, Ghyselinck NB, Ruiz P, Chambon P, Wurst W, von Melchner H (2005) Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A 102:7221–7226
Schwenk F, Sauer B, Kukoc N, Hoess R, Müller W, Kocks C, Kühn R, Rajewsky K (1997) Generation of Cre recombinase-specific monoclonal antibodies, able to characterize the pattern of Cre expression in cre-transgenic mouse strains. J Immunol Methods 207:203–212
Siegel RW, Jain R, Bradbury A (2001) Using an in vivo phagemid system to identify non-compatible loxP sequences. FEBS Lett 499:147–153
Shmerling D, Danzer CP, Mao X, Boisclair J, Haffner M, Lemaistre M, Schuler V, Kaeslin E, Korn R, Burki K, Ledermann B, Kinzel B, Muller M (2005) Strong and ubiquitous expression of transgenes targeted into the beta-actin locus by Cre/lox cassette replacement. Genesis 42:229–235
Skvorak K, Vissel B, Homanics GE (2006) Production of conditional point mutant knockin mice. Genesis 44:345–353
Theis M, Mas C, Doring B, Kruger O, Herrera P, Meda P, Willecke K (2001) General and conditional replacement of connexin43-coding DNA by a lacZ reporter gene for cell-autonomous analysis of expression. Cell Commun Adhes 8:383–386
Ungrin MD, Harrington L (2006) Strict control of telomerase activation using Cre-mediated inversion. BMC Biotechnol 6:10
Vooijs M, Jonkers J, Berns A (2001) A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep 2:292–297
Wiles MV, Vauti F, Otte J, Füchtbauer EM, Ruiz P, Füchtbauer A, Arnold HH, Lehrach H, Metz T, von Melchner H, Wurst W (2000) Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nat Genet 24:13–14
Xin HB, Deng KY, Shui B, Qu S, Sun Q, Lee J, Greene KS, Wilson J, Yu Y, Feldman M, Kotlikoff MI (2005) Gene trap and gene inversion methods for conditional gene inactivation in the mouse. Nucleic Acids Res 33:e14
Zhang Z, Lutz B (2002) Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res 30:e90
Acknowledgements
We are grateful to Professor Pierre Chambon (IGBMC) and Professor Harald von Melchner (University of Frankfurt) for their constant support, as well as for invaluable advices. We also thank Professor Manuel Mark for critical reading of the manuscript. This work was supported by funds from Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), and Université Louis Pasteur (ULP), Bundesministerium für Bildung und Forschung (BMBF), and the Deutsche Forschungs Gemeinschaft (DFG) to the German Gene Trap Consortium.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schnütgen, F., Ghyselinck, N.B. Adopting the good reFLEXes when generating conditional alterations in the mouse genome. Transgenic Res 16, 405–413 (2007). https://doi.org/10.1007/s11248-007-9089-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11248-007-9089-8

