Skip to main content

Advertisement

Log in

Adopting the good reFLEXes when generating conditional alterations in the mouse genome

  • Perspective
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Major advances have been made in the use of the Cre/loxP system for conditional gene targeting in the mouse. By combining the ability of Cre recombinase to invert or excise a DNA fragment, depending upon the orientation of the flanking loxP sites, and the use of wild-type loxP and variant lox511 sites, we devised an efficient and reliable Cre-mediated genetic switch, called FLEX, through which expression of a given gene can be turned off, while expression of another one can be simultaneously turned on. We discuss how this innovative, flexible and powerful approach, which virtually adapts to any kind of site-specific recombinase (e.g., Cre and Flp recombinases), can be used to easily generate, even at high throughput and genome wide scale, many genetic modifications in a conditional manner, including those which were considered as difficult or impossible to achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abremski K, Hoess R, Sternberg N (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Imaizumi T, Sekimoto T, Yoshinobu K, Yoshimuta J, Akizuki M, Miura K, Araki M, Yamamura K (1999) Exchangeable gene trap using the Cre/mutated lox system. Cell Mol Biol 45:737–750

    PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Yamamura K (2002) Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites. Nucleic Acids Res 30:e103

    Article  PubMed  Google Scholar 

  • Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, Berns A, Bradley A, Brown S, Carmeliet P, Chambon P, Cox R, Davidson D, Davies K, Duboule D, Forejt J, Granucci F, Hastie N, de Angelis MH, Jackson I, Kioussis D, Kollias G, Lathrop M, Lendahl U, Malumbres M, von Melchner H, Muller W, Partanen J, Ricciardi-Castagnoli P, Rigby P, Rosen B, Rosenthal N, Skarnes B, Stewart AF, Thornton J, Tocchini-Valentini G, Wagner E, Wahli W, Wurst W (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927

    Article  PubMed  CAS  Google Scholar 

  • Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Jorcano JL, Pirro A, Svensson M, Herken R, Sasaki T, Timpl R, Werner S, Fassler R (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J 19:3990–4003

    Article  PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Brocard J, Warot X, Wendling O, Messaddeq N, Vonesch JL, Chambon P, Metzger D (1997) Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc Natl Acad Sci U S A 94:14559–14563

    Article  PubMed  CAS  Google Scholar 

  • Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Feng YQ, Seibler J, Alami R, Eisen A, Westerman KA, Leboulch P, Fiering S, Bouhassira EE (1999) Site-specific chromosomal integration in mammalian cells: highly efficient Cre recombinase-mediated cassette exchange. J Mol Biol 292:779–785

    Article  PubMed  CAS  Google Scholar 

  • Forster A, Pannell R, Drynan LF, Codrington R, Daser A, Metzler M, Lobato MN, Rabbitts TH (2005) The invertor knock-in conditional chromosomal translocation mimic. Nat Methods 2:27–30

    Article  PubMed  CAS  Google Scholar 

  • Garcia EL, Mills AA (2002) Getting around lethality with Cre-mediated excision. Semin Cell Dev Biol 13:151–158

    Article  PubMed  CAS  Google Scholar 

  • Guenet JL (2005) The mouse genome. Genome Res 15:1729–1740

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H, Ruiz P (2003) A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A 100:9918–9922

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Igarashi H, Saito I, Masuda M (1998) Cre-loxP-mediated DNA flip-flop in mammalian cells leading to alternate expression of retrovirally transduced genes. Biochem Biophys Res Commun 248:806–811

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285:175–182

    Article  PubMed  CAS  Google Scholar 

  • Kolb AF (2001) Selection-marker-free modification of the murine β-casein gene using a lox2272 site. Anal Biochem 290:260–271

    Article  PubMed  CAS  Google Scholar 

  • Kulessa H, Hogan BL (2002) Generation of a loxP flanked bmp4loxP–lacZ allele marked by conditional lacZ expression. Genesis 32:66–68

    Article  PubMed  CAS  Google Scholar 

  • Lam KP, Rajewsky K (1998) Rapid elimination of autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci U S A 95:13171–13175

    Article  PubMed  CAS  Google Scholar 

  • Lauth M, Moerl K, Barski JJ, Meyer M (2000) Characterization of Cre-mediated cassette exchange after plasmid microinjection in fertilized mouse oocytes. Genesis 27:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216:55–65

    Article  PubMed  CAS  Google Scholar 

  • Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertenstein M, Nagy A (1999) Dev Biol 208:281–292

    Article  PubMed  CAS  Google Scholar 

  • Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    Article  PubMed  CAS  Google Scholar 

  • Martin DI, Whitelaw E (1996) The vagaries of variegating transgenes. Bioessays 18:919–923

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods 24:71–80

    Article  PubMed  CAS  Google Scholar 

  • Mlynarova L, Libantova J, Vrba L, Nap JP (2002) The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene 296:129–137

    Article  PubMed  CAS  Google Scholar 

  • Montoliu L, Chavez S, Vidal M (2000) Variegation associated with lacZ in transgenic animals: a warning note. Transgenic Res 9:237–239

    Article  PubMed  CAS  Google Scholar 

  • Moon AM, Capecchi MR (2000) Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455–459

    Article  PubMed  CAS  Google Scholar 

  • Müller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21

    Article  PubMed  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  PubMed  CAS  Google Scholar 

  • Nord AS, Chang PJ, Conklin BR, Cox AV, Harper CA, Hicks GG, Huang CC, Johns SJ, Kawamoto M, Liu S, Meng EC, Morris JH, Rossant J, Ruiz P, Skarnes WC, Soriano P, Stanford WL, Stryke D, von Melchner H, Wurst W, Yamamura K, Young SG, Babbitt PC, Ferrin TE (2006) The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res 34:D642–D648

    Article  PubMed  CAS  Google Scholar 

  • Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerffer P, Otipoby KL, Maruyama M, Rajewski K (2003) Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res 31:e140

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman S, Fox DT, Wahl GM (1991) Recombinase mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  PubMed  CAS  Google Scholar 

  • Qu S, Rinehart C, Wu HH, Wang SE, Carter B, Xin H, Kotlikoff M, Arteaga CL (2006) Gene targeting of ErbB3 using a Cre-mediated unidirectional DNA inversion strategy. Genesis 44:477–486

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Chabanis S, Angrand PO, Woodroofe C, Stewart AF (1999) Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases effective DNA FLEXibility at short distances. EMBO J 18:6630–6641

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Leroux MM, Fleming MD, Orkin SH (2002) Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2:415–425

    Article  PubMed  CAS  Google Scholar 

  • Samokhvalov IM, Thomson AM, Lalancette C, Liakhovitskaia A, Ure J, Medvinsky A (2006) Multifunctional reversible knockout/reporter system enabling fully functional reconstitution of the AML1/Runx1 locus and rescue of hematopoiesis. Genesis 44:115–121

    Article  PubMed  CAS  Google Scholar 

  • Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170

    Article  PubMed  CAS  Google Scholar 

  • Sauer B (1998) Inducible Gene targeting in mice using the Cre/lox system. Methods 14:381–392

    Article  PubMed  CAS  Google Scholar 

  • Schnütgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21:562–565

    Article  PubMed  CAS  Google Scholar 

  • Schnütgen F, De-Zolt S, Van Sloun P, Hollatz M, Floss T, Hansen J, Altschmied J, Seisenberger C, Ghyselinck NB, Ruiz P, Chambon P, Wurst W, von Melchner H (2005) Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A 102:7221–7226

    Article  PubMed  CAS  Google Scholar 

  • Schwenk F, Sauer B, Kukoc N, Hoess R, Müller W, Kocks C, Kühn R, Rajewsky K (1997) Generation of Cre recombinase-specific monoclonal antibodies, able to characterize the pattern of Cre expression in cre-transgenic mouse strains. J Immunol Methods 207:203–212

    Article  PubMed  Google Scholar 

  • Siegel RW, Jain R, Bradbury A (2001) Using an in vivo phagemid system to identify non-compatible loxP sequences. FEBS Lett 499:147–153

    Article  PubMed  CAS  Google Scholar 

  • Shmerling D, Danzer CP, Mao X, Boisclair J, Haffner M, Lemaistre M, Schuler V, Kaeslin E, Korn R, Burki K, Ledermann B, Kinzel B, Muller M (2005) Strong and ubiquitous expression of transgenes targeted into the beta-actin locus by Cre/lox cassette replacement. Genesis 42:229–235

    Article  PubMed  CAS  Google Scholar 

  • Skvorak K, Vissel B, Homanics GE (2006) Production of conditional point mutant knockin mice. Genesis 44:345–353

    Article  PubMed  CAS  Google Scholar 

  • Theis M, Mas C, Doring B, Kruger O, Herrera P, Meda P, Willecke K (2001) General and conditional replacement of connexin43-coding DNA by a lacZ reporter gene for cell-autonomous analysis of expression. Cell Commun Adhes 8:383–386

    Article  PubMed  CAS  Google Scholar 

  • Ungrin MD, Harrington L (2006) Strict control of telomerase activation using Cre-mediated inversion. BMC Biotechnol 6:10

    Article  PubMed  CAS  Google Scholar 

  • Vooijs M, Jonkers J, Berns A (2001) A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep 2:292–297

    Article  PubMed  CAS  Google Scholar 

  • Wiles MV, Vauti F, Otte J, Füchtbauer EM, Ruiz P, Füchtbauer A, Arnold HH, Lehrach H, Metz T, von Melchner H, Wurst W (2000) Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nat Genet 24:13–14

    Article  PubMed  CAS  Google Scholar 

  • Xin HB, Deng KY, Shui B, Qu S, Sun Q, Lee J, Greene KS, Wilson J, Yu Y, Feldman M, Kotlikoff MI (2005) Gene trap and gene inversion methods for conditional gene inactivation in the mouse. Nucleic Acids Res 33:e14

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Lutz B (2002) Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res 30:e90

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Pierre Chambon (IGBMC) and Professor Harald von Melchner (University of Frankfurt) for their constant support, as well as for invaluable advices. We also thank Professor Manuel Mark for critical reading of the manuscript. This work was supported by funds from Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), and Université Louis Pasteur (ULP), Bundesministerium für Bildung und Forschung (BMBF), and the Deutsche Forschungs Gemeinschaft (DFG) to the German Gene Trap Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert B. Ghyselinck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnütgen, F., Ghyselinck, N.B. Adopting the good reFLEXes when generating conditional alterations in the mouse genome. Transgenic Res 16, 405–413 (2007). https://doi.org/10.1007/s11248-007-9089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9089-8

Keywords

Navigation