Skip to main content

Advertisement

Log in

Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Agriculture productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. In the present work, transgenic buckwheat plants overexpressing AtNHX1, a vacuolar Na+/H+ antiporter gene from Arabidopsis thaliana, were regenerated after transformation with Agrobacterium tumefaciens. These plants were able to grow, flower and accumulate more rutin in the presence of 200 mmol/l sodium chloride. Moreover, the content of important nutrients in buckwheat was not affected by the high salinity of the soil. These results demonstrated the potential value of these transgenic plants for agriculture use in saline soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeywardena MY, Head RJ (2001) Dietary polyunsaturated fatty acid and antioxidant modulation of vascular dysfunction in the spontaneously hypertensive rat. Prostaglandins Leukot Essent Fatty Acids 65:91–97

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Xu JP (2000) Rapid production of transgenic turfgrass (Festuca rubra L.) plants. J Plant Physiol 157:441–448

    CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Bonafaccia G, Gambelli L, Fabjan N, Kreft I (2003) Trace elements in flour and bran from common and tartary buckwheat. Food Chem 83:1–5

    Article  CAS  Google Scholar 

  • Bovy A, Vos RD, Kempera M, Schijlena E, Pertejoa MA, Muirb S, Collinsb G, Robinsonb S, Verhoeyenb M, Hughesc S, Buelgad CS, Tunena A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes Lc and C1. Plant Cell 14:2509–2526

    Article  PubMed  CAS  Google Scholar 

  • Cho MJ, Ha CD, Lemaux PG (2000) Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep 19:1184–1189

    Article  Google Scholar 

  • Chen LH, Xu ZQ (2006) Tissue culture and high-frequency plant regeneration of buckwheat (Fagopyrum esculentum Moench). J Mol Cell Biol 39(5):445–452

    Google Scholar 

  • Dalton SJ, Bettany AJE, Morris P (1999) Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) plants produced by microprojectile bombardment. Plant Cell Rep 18:721–726

    Article  CAS  Google Scholar 

  • Dalton SJ, Bettany AJE, Timms E, Morris P (1998) Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures. Plant Sci 312:31–43

    Article  Google Scholar 

  • Davis WL, Matthew SB (2000) Antioxidants and cancer III: quercetin. Altern Med Rev 5:196–208

    Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45(2):146–159

    Article  PubMed  CAS  Google Scholar 

  • Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10:869–882

    Article  CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Gorham J (1990) Salt tolerance in the Triticeae: K+/Na+ discrimination in synthetic hexaploid wheat. J Exp Bot 41:623–627

    Article  CAS  Google Scholar 

  • Gorham J, Wyn Jones RGA (1990) Bristol, partial characterization of the trait for enhanced K+/Na+ discrimination in the D genome of wheat. Planta 180:590–597

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiology 31:149–190

    Article  CAS  Google Scholar 

  • Holasova M, Fidlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S (2001) Buckwheat––the source of antioxidant activity in functional foods. Food Res Intern 35:207–211

    Article  Google Scholar 

  • Im J, Huff HE, Hsieh F (2003) Effects of processing conditions on the physical and chemical properties of buckwheat grit cakes. J Agric Food Chem 51:659–666

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Hao JG, Jia JF (2002) Efficient plant regeneration in vitro in buckwheat. Plant Cell Tissue Organ Cult 69:293–295

    Article  CAS  Google Scholar 

  • Kim KH, Lee YH, Kim D, Park YH, Lee JY, Wang YS, Kim YH (2004) Agrobacterium-mediated genetic transformation of Perilla frutescens. Plant Cell Rep 23:386–390

    Article  PubMed  CAS  Google Scholar 

  • Kim SL, Kim SK, Park CH (2004) Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res Intern 37:319–327

    Article  CAS  Google Scholar 

  • Kreft S, Knapp M, Kreft I (1999) Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J Agric Food Chem 47:4649–4652

    Article  PubMed  CAS  Google Scholar 

  • Kreft I, Fabjan N, Yasumoto K (2006) Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem 98:508–512

    Article  CAS  Google Scholar 

  • KrkosKova B, Mrazova Z (2005) Prophylactic components of buckwheat. Food Res Intern 38:561–568

    Article  Google Scholar 

  • Li YY, Wang ZH, Zhang Z (2004) An optimum method of extracting buckwheat genomic RNA. Biotechnology 14:23–24 (in Chinese)

    Google Scholar 

  • Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402

    PubMed  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Kang DB, Kim CW, Ko SH, Yum HY, Kim KE (2000) Identification and characterization of the major allergens of buckwheat. Allergy 55:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Ratner A, Jacoby B (1976) Effect of K+, its counter anion, and pH on sodium efflux from barley root tips. J Exp Bot 27:843–852

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a lab manual, 2 edn. Cold Spring Harbour Laboratory Press, NY, pp 31–58

    Google Scholar 

  • Schachtman DP, Kumar R, Schroeder JI, Marsh EL (1997) Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad Sci USA 94:11079–11084

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Lagudah ES, Munns R (1992) The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theor Appl Genet 84:714–719

    Article  Google Scholar 

  • Schachtman DP, Munns R (1992) Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust J Plant Physiol 19:331–340

    Article  CAS  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  PubMed  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  CAS  Google Scholar 

  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analysis of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant J 40:752–771

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Honda Y, Funatsuki W, Nakatsuka K (2002) Purification and characterization of flavonol 3-glucosidase, and its activity during the ripening in tartary buckwheat seeds. Plant Sci 163:417–423

    Article  CAS  Google Scholar 

  • Tao X, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plant 116:206–212

    Article  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Wang GR, Binding H, Posselt UK (1997) Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam. J Plant Physiol 151:83–90

    CAS  Google Scholar 

  • Wang YY, Chen QJ, Chen M, Chen J, Wang XC (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73

    Article  CAS  Google Scholar 

  • Watanabe M (1998) Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J Agric Food Chem 46:839–845

    Article  CAS  Google Scholar 

  • Wojcicki J, Barcew-Wiszniewska B, Samochowiec L, Rozewicka L (1995) Extractum Fagopyri reduces atherosclerosis in high-fat diet fed rabbits. Die Pharmazie 50:560–562

    PubMed  CAS  Google Scholar 

  • Xue GP (2002) Characterization of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucl Acids Res 30:77–79

    Article  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt tolerant crop plants: challenges and opportunities. Trend Plant Sci 12:615–620

    Article  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

  • Zhe YX, Da YZ, Gang PX, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Hong-Xia Zhang who provided us the plasmid pHZX1. This work was supported by Major Research Project of Natural Science Foundation of Shaanxi Province (2001 SM24), Research Project of Provincial Key Laboratory of Shaanxi (04JS07) and Scientific Research Project of the Education Department of Shaanxi Province (05JK304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Qin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LH., Zhang, B. & Xu, ZQ. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17, 121–132 (2008). https://doi.org/10.1007/s11248-007-9085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9085-z

Keywords

Navigation