Skip to main content

Advertisement

Log in

Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system

  • Short Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Using the Sleeping Beauty (SB) transposon system, we have developed a simple method for the generation of Xenopus laevis transgenic lines. The transgenesis protocol is based on the co-injection of the SB transposase mRNA and a GFP-reporter transposon into one-cell stage embryos. Transposase-dependent reporter gene expression was observed in cell clones and in hemi-transgenic animals. We determined an optimal ratio of transposase mRNA versus transposon-carrying plasmid DNA that enhanced the proportion of hemi-transgenic tadpoles. The transgene is integrated into the genome and may be transmitted to the F1 offspring depending on the germline mosaicism. Although the transposase is necessary for efficient generation of transgenic Xenopus, the integration of the transgene occurred by an non-canonical transposition process. This was observed for two transgenic lines analysed. The transposon-based technique leads to a high transgenesis rate and is simple to handle. For these reasons, it could present an attractive alternative to the classical Restriction Enzyme Mediated Integration (REMI) procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Method 2:975–979

    Article  CAS  Google Scholar 

  • Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276

    Article  PubMed  CAS  Google Scholar 

  • Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263:191–202

    Article  PubMed  CAS  Google Scholar 

  • de Luze A, Sachs L, Demeneix B (1993) Thyroid hormone-dependent transcriptional regulation of exogenous genes transferred into Xenopus tadpole muscle in vivo. Proc Natl Acad Sci USA 90:7322–7326

    Article  PubMed  Google Scholar 

  • Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99:4495–4499

    Article  PubMed  CAS  Google Scholar 

  • Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226

    Article  PubMed  CAS  Google Scholar 

  • Etkin LD, Pearman B (1987) Distribution, expression and germ line transmission of exogenous DNA injected into fertilized eggs of Xenopus laevis. Development 99:15–23

    PubMed  CAS  Google Scholar 

  • Geurts AM, Yang Y, Clark KJ, Liu G, Cui Z, Dupuy AJ, Bell JB, Largaespada DA, Hackett PB (2003) Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol Ther 8:108–117

    Article  PubMed  CAS  Google Scholar 

  • Grabher C, Henrich T, Sasado T, Arenz A, Wittbrodt J, Furutani-Seiki M (2003) Transposon-mediated enhancer trapping in medaka. Gene 322:57–66

    Article  PubMed  CAS  Google Scholar 

  • Hackett PB, Ekker SC, Largaespada DA, McIvor RS (2005) Sleeping Beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 54:189–232

    Article  PubMed  CAS  Google Scholar 

  • Ivics Z, Izsvak Z (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies. Methods Mol Biol 260:255–276

    PubMed  CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  • Izsvak Z, Ivics Z, Plasterk RH (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302:93–102

    Article  PubMed  CAS  Google Scholar 

  • Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    PubMed  CAS  Google Scholar 

  • Liu G, Cui Z, Aronovich EL, Whitley CB, Hackett PB (2004) Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J Gene Med 6:574–583

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Elsevier North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Offield MF, Hirsch N, Grainger RM (2000) The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos. Development 127:1789–1795

    PubMed  CAS  Google Scholar 

  • Ouatas T, Le Mevel S, Demeneix BA, de Luze A (1998) T3-dependent physiological regulation of transcription in the Xenopus tadpole brain studied by polyethylenimine based in vivo gene transfer. Int J Dev Biol 42:1159–1164

    Google Scholar 

  • Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2005) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235:247–252

    Google Scholar 

  • Plasterk RHA, Van Luenen HGAM (2002) The Tc1/mariner family of transposable elements. In: Craig NL et al (eds) Mobile DNA II. ASM Press, Washington, USA, pp 519–531

  • Sinzelle L, Pollet N, Bigot Y, Mazabraud A (2005) Characterization of multiple lineages of Tc1-like elements within the genome of the amphibian Xenopus tropicalis. Gene 349:187–196

    Article  PubMed  CAS  Google Scholar 

  • Sive HL, Grainger R, Harland R (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press

  • Sparrow DB, Latinkic B, Mohun TJ (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res 28:E12

    Article  PubMed  CAS  Google Scholar 

  • Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Ivics and Z. Izsvak for the hepful comments of the manuscript and the gift of the three plasmids pT[CMV-GFP], pCMVSB and pBSSK/SB10, and SB transposase antibodies. This research was funded by grants from ARC, CNRS, the 5th PCRDT EC program and the Paris-Sud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mazabraud.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinzelle, L., Vallin, J., Coen, L. et al. Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15, 751–760 (2006). https://doi.org/10.1007/s11248-006-9014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9014-6

Keywords

Navigation