Skip to main content

Advertisement

Log in

Chromosomal localization of a proinsulin transgene in Japanese quail by laser pressure catapulting

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Transgenic avian bioreactors produce therapeutic recombinant proteins in egg white. To date, however, methods for transgenic modification of the avian genome or determining transgenic status of individual birds are scarce. The dual, but interrelated, goals of this research were to: (1) develop a method of detecting stable DNA insertion into Japanese quail; and (2) provide a method for gene location on avian chromosomes. We created Teflon-coated coverslip slides to facilitate laser pressure catapulting of avian chromosomes for DNA amplification and nucleotide sequencing. Transgenic G2 Japanese quail, containing germline incorporation of proinsulin, were identified by isolation of chromosomes using laser microdissection and laser pressure catapulting. Subsequent amplification of each chromosome identified 2–5 chromosomes with the proinsulin transgene inserted. Nucleotide sequencing of each chromosomal insertion was identical to the proinsulin portion of the original vector. By applying laser pressure catapulting and PCR of individual chromosomes, we were able to determine that the transgene correctly inserted into avian chromosomes and that the majority of the insertions occurred within microchromosomes. Because many potential therapeutic transgenes have similar or nearly identical nucleotide sequence to the host’s native gene, laser microdissection and subsequent analysis may be required for detailed documentation of transgene expression before proceeding with transgenic protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambros PF, Matzke AJM, Matzke MA (1986) Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J 5:2073–2077

    PubMed  CAS  Google Scholar 

  • Assaad FF, Tucker KL, Signer ER (1993) Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol 22:1067–1085

    Article  PubMed  CAS  Google Scholar 

  • Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology 9:1067–1072

    Article  PubMed  CAS  Google Scholar 

  • Datar RV, Cartwright T, Rosen CG (1993) Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasmingoen activator. Biotechnology 11:349–357

    Article  PubMed  CAS  Google Scholar 

  • Fransz PF, Stam M, Montijn B, Ten Hoopen R, Wiegant J, Kooter JM, Oud O, Nanninga N (1996) Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridization. Plant J 9:767–774

    Article  CAS  Google Scholar 

  • Gordon K, Lee E, Vitale JA, Smith AE, Westphal H, Hennighausen L (1992) Production of human tissue plasminogen activator in transgenic mouse milk. Biotechnology 24:425–428

    PubMed  CAS  Google Scholar 

  • Gosden J, Lawson D (1994) Rapid chromosome identification by oligonucleotide-primed in situ DNA synthesis (PRINS). Hum Mol Genet 3:931–936

    PubMed  CAS  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE Jr et al (1985) Production of transgenic rabbits, sheep, and pigs by microinjection. Nature 315:680–683

    Article  PubMed  CAS  Google Scholar 

  • Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–320

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Asakawa S, Itoh Y, Shimizu N, Mizuno S (2000) Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos. Mol Biol Cell 11:3645–3660

    PubMed  CAS  Google Scholar 

  • Kulnane LS, Lehman EJH, Hock BJ, Tsuchiya KD, Lamb BT (2002) Rapid and efficient detection of transgene homozygosity by FISH of mouse fibroblasts. Mamm Genome 13:223–226

    Article  PubMed  CAS  Google Scholar 

  • Lu JK, Fu BH, Wu JL, Chen TT (2002) Production of transgenic silver sea bream (Sparus sarba) by different gene transfer methods. Mar Biotechnol 4:328–337

    Article  PubMed  CAS  Google Scholar 

  • Makinen A, Andersson M, Nikunen S (1998) Detection of the X chromosomes in a Klinefelter boar using a whole human X chromosome painting probe. Anim Reprod Sci 52:317–323

    Article  PubMed  CAS  Google Scholar 

  • McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733

    Article  PubMed  CAS  Google Scholar 

  • McNally LR, Beck ML, Biggers CJ (2000) Karyotypic analysis of the cotton boll weevil, Anthonomus grandis Boheman. Genetica 109:219–225

    Article  PubMed  CAS  Google Scholar 

  • McNally LR, Henk WG, Cooper RK (2005) Laser pressure catapulting followed by B actin gene identification in Japanese quail macrochromosomes and microchromosomes using Teflon-coated coverslip slides. J Microsc 218:219–224

    PubMed  CAS  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    Article  CAS  Google Scholar 

  • Mozdziak PE, Borwornpinyo S, McCoy DW, Petitte JN (2003) Development of transgenic chickens expressing bacterial beta-galactosidase. Dev Dyn 226:439–445

    Article  PubMed  CAS  Google Scholar 

  • Perret SJ, Valentine J, Leggett JM, Morris P (2003) Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.). J Plant Physiol 160:931–943

    Article  PubMed  CAS  Google Scholar 

  • Rapp JC, Harvey AJ, Speksnijder GL, Hu W, Ivarie R (2003) Biologically active human interferon produced in the egg white of transgenic hens. Transgenic Res 12:569–575

    Article  PubMed  CAS  Google Scholar 

  • Salter D, Balander R, Crittenden L (1999) Evaluation of Japanese quail as a model system for avian transgenesis using avian leucosis viruses. Poult Sci 78:230–234

    PubMed  CAS  Google Scholar 

  • Schneider-Stock R, Boltze C, Jaeger V, Stumm M, Seiler C, Rys J, Schutze K, Roessner A (2002) Significance of loss of heterozygosity of the RB1 gene during tumour progression in well-differentiated liposarcomas. J Pathol 197:654–660

    Article  PubMed  CAS  Google Scholar 

  • Schutze K, Lahr G (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16:737–742

    Article  PubMed  CAS  Google Scholar 

  • Shaw DL, Carsience RS, Etches RJ, Verrinder Gibbins AM (1992) The fate of female donor blastodermal cells in male chimeric chickens. Biochem Cell Biol 70:1218–1229

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Bruley CK, Paton IR, Dunn I, Jones CT, Windsor D, Morrice DR, Law AS, Masabanda J, Sazanov A, Waddington D, Fries R, Burt DW (2000) Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet 31:96–103

    Article  PubMed  CAS  Google Scholar 

  • Sokolova YY, McNally LR, Fuxa JR (2003) PCR-based analysis of spores isolated from smears by laser pressure catapult microdissection confirms genetic identity of spore morphotypes of the microsporidian Thelohania solenopsae. J Eukaryot Microbiol 50S:584–585

    Article  Google Scholar 

  • Stich M, Thalhammer S, Burgemeister R, Friedemann G, Ehnle S, Luth C, Schutze K (2003) Live cell catapulting and recultivation. Pathol Res Pract 199:405–409

    Article  PubMed  Google Scholar 

  • Stock AD, Burnham DB, Hsu TC (1972) Giemsa banding of meiotic chromosomes with description of a procedure for cytological preparation from solid tissue. Cytogenetics 11:534–539

    PubMed  CAS  Google Scholar 

  • Stromqvist M, Houdebine M, Andersson JO et al (1997) Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits. Transgenic Res 6:271–278

    Article  PubMed  CAS  Google Scholar 

  • Taylor MJ, Fan J (1997) Transgenic rabbit models for the study of atherosclerosis. Front Biosci 2:298–308

    Google Scholar 

  • Tolmachova T, Simpson K, Huxley C (1999) Analysis of a YAC with human telomeres and oriP from epstein-barr virus in yeast and 293 cells. Nucleic Acids Res 27:3736–3744

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Lewis ME, Whallon JH, Sink KC (1995) Chromosome mapping of T-DNA inserts in transgene Petunia by in situ hybridization. Transgene Res 4:241–246

    Article  CAS  Google Scholar 

  • Yamashita S, Mita S, Arima T, Maeda Y, Kimura E, Nishida Y, Murakami T, Okado H, Uchino M (2001) Bcl-2 expression by retrograde transport of adenoviral vectors with Cre-loxP recombination system in motor neurons of mutant SOD1 transgenic mice. Gene Ther 8:977–986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNally, L.R., Henk, W.G. & Cooper, R.K. Chromosomal localization of a proinsulin transgene in Japanese quail by laser pressure catapulting. Transgenic Res 15, 427–433 (2006). https://doi.org/10.1007/s11248-006-0013-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-0013-4

Keywords

Navigation