Transgenic Research

, Volume 14, Issue 5, pp 551–561 | Cite as

Arabidopsis thaliana Full Genome Longmer Microarrays: A Powerful Gene Discovery Tool for Agriculture and Forestry

  • Carl J. DouglasEmail author
  • Jürgen Ehlting


Sequenced plant genomes provide a large reservoir of known genes with potential for use in crop and tree improvement, but assignment of specific functions to annotated genes in sequenced plant genomes remains a challenge. Furthermore, most plant genes belong to families encoding proteins with related but distinct functions. In this commentary, we discuss our development of Arabidopsis spotted whole genome longmer oligonucleotide microarrays, and their use in global transcription profiling. We show that longmer array based transcriptome analysis in Arabidopsis can be used as an efficient and effective gene discovery and functional genomics tool, particularly for functional analyses of members of large gene families. We discuss experiments that focus on gene families involved in phenylpropanoid natural product biosynthesis and fiber differentiation. These analyses have helped to elucidate functions of individual gene family members, and have identified new candidate genes involved in fiber development and differentiation. Results obtained by these studies in Arabidopsis can be used as the basis for gene discovery in commercially important plants, and we have focused our attention on Populus trichocarpa (poplar), a species important in forestry and agroforestry for which complete genome sequence information is available.


Transcription factor expression profiling fiber development Arabidopsis Populus phenylpropanoid metabolism shikimate pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ 1990Basic local alignment search toolJ Mol Biol215403410CrossRefPubMedGoogle Scholar
  2. Boerjan, W, Ralph, J, Baucher, M 2003Lignin biosynthesisAnn Rev Plant Biol54519546CrossRefGoogle Scholar
  3. Chaffey, N, Cholewa, E, Regan, S, Sundberg, B 2002Secondary xylem development in Arabidopsis: a model for wood formationPhysiol Plant114594600PubMedGoogle Scholar
  4. Costa, MA, Collins, RE, Anterola, AM, Cochrane, FC, Davin, LB, Lewis, NG 2003An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereofPhytochem6410971112CrossRefGoogle Scholar
  5. Cukovic, D, Ehlting, J, VanZiffle, JA, Douglas, CJ 2001Structure and evolution of 4-coumarate: coenzyme A ligase (4CL) gene familiesBiol Chem382645654CrossRefPubMedGoogle Scholar
  6. Dixon, RA, Achnine, L, Kota, P, Liu, C-J, Reddy, MSS, Wang, L 2002The phenylpropanoid pathway and plant defence-a genomics perspectiveMol Plant Pathol3371390CrossRefGoogle Scholar
  7. Ehlting, J, Büttner, D, Wang, Q, Douglas, CJ, Somssich, IE, Kombrink, E 1999Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiospermsPlant J19920CrossRefPubMedGoogle Scholar
  8. Ehlting, J, Mattheus, N, Aeschliman, DS, Li, E, Hamberger, B, Cullis, IF, Zhuang, J, Kaneda, M, Mansfield, SD, Samuels, L, Ritland, K, Ellis, BE, Bohlmann, J, Douglas, CJ 2005Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiationPlant J42618640CrossRefPubMedGoogle Scholar
  9. Girke, T, Todd, J, Ruuska, S, White, J, Benning, C, Ohlrogge, J 2000Microarray analysis of developing Arabidopsis seedsPlant Physiol12415701581CrossRefPubMedGoogle Scholar
  10. Goujon, T, Sibout, R, Eudes, A, MacKay, J, Jouanin, L 2003Genes involvedikntthe biosynthesis of lignin precursors in Arabidopsis thalianaPlant Physiol Biochem41677687CrossRefGoogle Scholar
  11. Groover, AT 2005What makes a tree a tree?Trends Plant Biol10210214CrossRefGoogle Scholar
  12. Hahlbrock, K, Scheel, D 1989Physiology and molecular biology of phenylpropanoid metabolismAnn Rev Plant Physiol Plant Mol Biol40347469CrossRefGoogle Scholar
  13. Hegde, P, Qi, R, Abernathy, K, Gay, C, Dharap, S, Gaspard, R, Hughes, JE, Snesrud, E, Lee, N, Quackenbush, J 2000A concise guide to cDNA microarray analysisBioTechniques29548562PubMedGoogle Scholar
  14. Humphreys, JM, Chapple, C 2002Rewriting the lignin roadmapCurr Opin Plant Biol5224229CrossRefPubMedGoogle Scholar
  15. Kane, MD, Jatkoe, TA, Stumpf, CR, Lu, J, Thomas, JD, Madore, SJ 2000Assessment of the sensitivity and specificity of oligonucleotide 50mer microarraysNucl Acids Res2845524557CrossRefPubMedGoogle Scholar
  16. Kim, S-J, Kim, M-R, Bedger, DL, Moinuddin, SGA, Cardenas, CL, Davin, LB, Kang, CH, Lewis, NG 2003Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in ArabidopsisProc Nat Acad Sci USA10114551460CrossRefGoogle Scholar
  17. Lipshutz, RJ, Fodor, SPA, Gingeras, TR, Lockhart, DJ 1999High density synthetic oligonucleotide arraysNature Genet21 Supplement2024CrossRefGoogle Scholar
  18. Little, CHA, MacDonald, JE, Olsson, O 2002Involvement of indole-3-acetic acid in fascicular and interfascicular cambial growth and interfascicular extraxylary fiber differentiation in Arabidopsis thaliana inflorescence stemsInt J Plant Sci163519529CrossRefGoogle Scholar
  19. Lockhart, DJ, Dong, HL, Byrne, MC, Follettie, MT, Gallo, MV, Chee, MS, Mittmann, M, Wang, CW, Kobayashi, M, Horton, H, Brown, EL 1996Expression monitoring by hybridization to high-density oligonucleotide arraysNature Biotech1416751680CrossRefGoogle Scholar
  20. McGonigle, B, Keeler, SJ, Lau, S-MC, Koeppe, MK, O′Keefe, DP 2000A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maizePlant Physiol12411051120CrossRefPubMedGoogle Scholar
  21. Meyers, BC, Galbraith, DW, Nelson, T, Agrawal, V 2004Methods for transcriptional profiling in plants. Be fruitful and replicatePlant Physiol135637652CrossRefPubMedGoogle Scholar
  22. Mizutani, M, Ohta, D 1998Two isoforms of NADPH: cytochrome P450 reductase in Arabidopsis thaliana. Gene structure, heterologous expression in insect cells, and differential regulationPlant Physiol116357367CrossRefPubMedGoogle Scholar
  23. Newman, LJ, Perazza, DE, Juda, L, Campbell, MM 2004Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotypePlant J37239250PubMedGoogle Scholar
  24. Nieminen, KM, Kauppinen, L, Helariutta, Y 2004A weed for wood? Arabidopsis as a genetic model for xylem developmentPlant Physiol135653659CrossRefPubMedGoogle Scholar
  25. Oh, S, Park, S, Han, K-H 2003Transcriptional regulation of secondary growth in Arabidopsis thalianaJ Exp Bot5427092722CrossRefPubMedGoogle Scholar
  26. Patzlaff, A, McInnis, S, Courtenay, A, Surman, C, Newman, LJ, Smith, C, Bevan, MW, Mansfield, S, Whetten, RW, Sederoff, RR, Campbell, MM 2003Characterisation of a pine MYB that regulates lignificationPlant J36743754CrossRefPubMedGoogle Scholar
  27. Raes, J, Rohde, A, Christensen, JH, Peer, Y, Boerjan, W 2003Genome-wide characterization of the lignification toolbox in ArabidopsisPlant Physiol13310511071CrossRefPubMedGoogle Scholar
  28. Schrader, J, Baba, K, May, ST, Palme, K, Bennett, M, Bhalerao, RP, Sandberg, G 2003Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signalsProc Nat Acad Sci USA1001009610101CrossRefPubMedGoogle Scholar
  29. Schrader, J, Nilsson, J, Mellerowicz, E, Berglund, A, Nilsson, P, Hertzberg, M, Sandberg, G 2004A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identityPlant Cell1622782292CrossRefPubMedGoogle Scholar
  30. Shockey, JA, Fulda, MS, Browse, J 2003Arabidopsis contains a large superfamily of acyl-activating enxymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coezyme A synthasesPlant Physiol13210651076CrossRefPubMedGoogle Scholar
  31. The Arabidopsis Genome Initiative2000Analysis of the genome sequence of the flowering plant Arabidopsis thalianaNature408796815Google Scholar
  32. Wang, HY, Malek, RL, Kwitek, AE, Green, AS, Luu, TV, Bahbahani, B, Frank, B, Quackenbush, J, Lee, NH 2003Assessing unmodified 70-mer oligonucleotide probe performance on glass-slide microarraysGenome Biol4R5CrossRefPubMedGoogle Scholar
  33. Zhang, JZ, Creelman, RA, Zhu, J-K 2004From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in cropsPlant Physiol135615621CrossRefPubMedGoogle Scholar
  34. Xu, W, Bak, S, Decker, A, Paquette, S, Feyereisen, R, Galbraith, D 2001Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thalianaGene2726174CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of BotanyUniversity of British ColumbiaVancouverCanada
  2. 2.Institute for Plant Molecular BiologyCentre National de la Recherche ScientifiqueStrasbourgFrance

Personalised recommendations