Advertisement

Transgenic Research

, Volume 14, Issue 5, pp 665–675 | Cite as

Assessment of Nematode Resistance in Wheat Transgenic Plants Expressing Potato Proteinase Inhibitor (PIN2) Gene

  • Dalia Vishnudasan
  • M.N. Tripathi
  • Uma Rao
  • Paramjit Khurana
Article

Abstract

Serine proteinase inhibitors (IP’s) are proteins found naturally in a wide range of plants with a significant role in the natural defense system of plants against herbivores. The question addressed in the present study involves assessing the ability of the serine proteinase inhibitor in combating nematode infestation. The present study involves engineering a plant serine proteinase inhibitor (pin2) gene into T. durum PDW215 by Agrobacterium-mediated transformation to combat cereal cyst nematode (Heterodera avenae) infestation. Putative T0 transformants were screened and positive segregating lines analysed further for the study of the stable integration, expression and segregation of the genes. PCR, Southern analysis along with bar gene expression studies corroborate the stable integration pattern of the respective genes. The transformation efficiency is 3%, while the frequency of escapes was 35.71%. χ2 analysis reveals the stable integration and segregation of the genes in both the T1 and T2 progeny lines. The PIN2 systemic expression confers satisfactory nematode resistance. The correlation analysis suggests that at p < 0.05 level of significance the relative proteinase inhibitor (PI) values show a direct positive correlation vis-à-vis plant height, plant seed weight and also the seed number.

Keywords

Agrobacterium-mediated transformation Heterodera avenae potato proteinase inhibitor serine proteinase inhibitor transgenic wheat Triticum durum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, HJ 1993 Opportunities for improved control of plant parasitic nematodes via plant biotechnologyBeadle, DJBishop, DHLCopping, LGDixon, GKHolloman, DW eds. Opportunities for Molecular Biology in Crop ProductionBritish Crop Protection CouncilNottingham, UK25766Google Scholar
  2. Atkinson, HJ, Urwin, P, Hansen, E, McPherson, M 1995Designs for engineered resistance to root-parasitic nematodesTrends Biotechnol13369374CrossRefGoogle Scholar
  3. Atkinson, HJ, Urwin, PE, McPherson, MJ 2003Engineering plants for nematode resistanceAnn Rev Phytopathol41615639CrossRefGoogle Scholar
  4. Cheng, M, Fry, JE, Pang, S, Zhou, H, Hironaka, CM, Duncan, DR, Conner, TW, Wan, Y 1997Genetic transformation of wheat mediated by Agrobacterium tumefaciensPlant Physiol115971980PubMedGoogle Scholar
  5. Duan, X, Li, X, Xue, Q, Abo-El-Saad, M, Xu, D, Wu, R 1996Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistantNature Biotechnol14494498CrossRefGoogle Scholar
  6. Hepher A and Atkinson HJ (1992) Nematode control with proteinase inhibitors. Patent WO92/15690.Google Scholar
  7. Hu, T, Metz, S, Chay, C, Zhou, HP, Biest, N, Chen, G, Cheng, M, Feng, X, Radionenko, M, Lu, F, Fry, J 2003Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selectionPlant Cell Rep2110101019CrossRefPubMedGoogle Scholar
  8. Hussey, RS 1993Evaluation of transgenic plants expressing proteinase inhibitor genes for root-knot nematodeSoc Nematol Mol Biol Newslett51516Google Scholar
  9. Hussey, RS, Grundler, FMW 1998Nematode parasitism of plantsPerry, RNWright, DJ eds. The Physiology and Biochemistry of Free- Living and Plant-Parasitic NematodesCABI PublishingWallingford43213Google Scholar
  10. Jefferson, RA, Kavanagh, TA, Bevan, MW 1987GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J639013907PubMedGoogle Scholar
  11. Johnson, R, Narvaez, J, An, G, Ryan, C 1989Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvaeProc Natl Acad Sci (USA)8698719875Google Scholar
  12. Khanna, HK, Daggard, GE 2003Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration mediumPlant Cell Rep2142936PubMedGoogle Scholar
  13. Khurana, J, Chugh, A, Khurana, P 2002Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat (Triticum dicoccum Schuble)Indian J Exp Biol401295303PubMedGoogle Scholar
  14. Kramer, C, Di Mio, J, Carswell, GK, Shillito, RD 1993Selection of transformed protoplast-derived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol redPlanta190454458CrossRefGoogle Scholar
  15. Lawrence PK and Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electronic J. Biotechnol 5: 93–104. (http://www.ejb.org/content/vol5/issue1).Google Scholar
  16. Lee, B, Murdoch, K, Kreis, M, Jones, MGK 1989A method for large-scale progeny screening of putative transformed cerealPlant Mol Biol Rep7129134Google Scholar
  17. Lilley, CJ, Urwin, PE, Atkinson, HJ, McPherson, MJ 1997Characterization of cDNAs encoding serine proteinases from the soybean cyst nematode Heterodera glycinesMol Biochem Parasitol89195207CrossRefPubMedGoogle Scholar
  18. Lilley, CJ, Urwin, PE, McPherson, MJ, Atkinson, HJ 1996Characterisation of intestinally active proteinases of cyst nematodesParasitol113415425Google Scholar
  19. Lonsdale, DM, Lindup, S, Moisan, LJ, Harvey, AJ 1998Using firefly luciferase to identify the transition from transient to stable expression in bombarded wheat scutellar tissuePhysiol Plant102447453CrossRefGoogle Scholar
  20. Mahalakshmi, A, Chugh, A, Khurana, P 2000Exogenous DNA uptake via cellular perneabilization and expression of foreign gene in wheat zygotic embryosPlant Biotech17235240Google Scholar
  21. McManus, MT, Burgess, EPJ, Philip, B, Watson, LM, Laing, WA, Voisey, CR, White, DWR 1999Expression of the soybean (Kunitz) trypsin inhibitor in transgenic tobacco: Effects on larval development of Spodoptera lituraTransgenic Res8383395CrossRefGoogle Scholar
  22. Mullis, KB, Faloona, F 1987Specific synthesis of DNA in vitro via a polymerase chain reactionMethod Enzymol155350355Google Scholar
  23. Nehra, NS, Chibbar, RN, Leung, N, Caswell, K, Mallard, C, Steinhauer, L, Baga, M, Kartha, KK 1994Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues from microprojectile bombardment with two distinct gene constructsPlant J5285297CrossRefGoogle Scholar
  24. Ozgen, M, Turet, M, Ozcan, S, Sancak, C 1996aCallus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypesPlant Breed115455458Google Scholar
  25. Ozgen, M, Turet, M, Altinok, S, Sanzak, C 1996bEfficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypesPlant Cell Rep18331335Google Scholar
  26. Patnaik D, Khurana P (2001) Wheat Biotechnology: a minireview. Electronic J Biotechnol 4: 1–29. (http://www.ejb.org/content/vol4/issue2/full/4/).Google Scholar
  27. Patnaik, D, P, Khurana 2003Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli.BMC Plant Biology3516CrossRefPubMedGoogle Scholar
  28. Patnaik D and Vishnudasan D, Khurana P (2005) Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. BMC Biotechnol (in press).Google Scholar
  29. Pellegrineschi, A, Brito, R, Velazquez, L, Noguera, L, Pfeiffer, W, McLean, S, Hoisington, D 2002The effect of pretreatment with mild heat and drought stresses on the explant and biolistic transformation frequency of three durum wheat cultivarsPlant Cell Rep20955960CrossRefGoogle Scholar
  30. Ryan, CA 1990Protease inhibitors in plants: genes for improving defenses against insects and pathogensAnnu Rev Phytopathol28425449CrossRefGoogle Scholar
  31. Sasser JN, Freckman DW (1987) A world perspective on nematology: The role of the society. In: Veech JA, Dickerson DW (eds), Vistas on nematology. (pp. 7–14) Society of Nematologists.Google Scholar
  32. Srivastava, V, Anderson, OD, Ow, DW 1999Single-copy transgenic wheat generated through the resolution of complex integration patternsProc Natl Acad Sci (USA)961111711121CrossRefGoogle Scholar
  33. Takumi, S, Shimada, T 1996Production of transgenic wheat through particle bombardment of scutellar tissues: frequency is influenced by culture durationJ Plant Physiol149418423Google Scholar
  34. Urwin, PE, Lilley, CJ, McPherson, MJ, Atkinson, HJ 1997Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatinPlant J12455461CrossRefPubMedGoogle Scholar
  35. Vishnudasan, D, Khurana, P 2005New paradigms towards appraising plant parasitic nematodes infestation with special emphasis on Cereal Cyst Nematode (H.avenae)Physiol Mol Biol plants11118Google Scholar
  36. Wu, H, Sparks, C, Amoah, B, Jones, HD 2003Factors influencing successful Agrobacterium-mediated genetic transformation of wheatPlant Cell Rep2165968PubMedGoogle Scholar
  37. Wyss, U, Zunke, U 1986Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host rootsRev Nematol9153165Google Scholar
  38. Xu, D, McElroy, D, Thornburg, RW, Wu, R 1993Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate and abscisic acid in transgenic rice plantsPlant Mol Biol22573588CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Dalia Vishnudasan
    • 1
  • M.N. Tripathi
    • 2
  • Uma Rao
    • 2
  • Paramjit Khurana
    • 1
  1. 1.Department of Plant Molecular BiologyUniversity of Delhi110 021India
  2. 2.Division of NematologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations