Transgenic Research

, Volume 14, Issue 4, pp 365–372 | Cite as

Genetic engineering of peppermint for improved essential oil composition and yield

  • Mark R. Wildung
  • Rodney B. CroteauEmail author


The biochemistry, organization, and regulation of essential oil metabolism in the epidermal oil glands of peppermint have been defined, and most of the genes encoding enzymes of the eight-step pathway to the principal monoterpene component (−)-menthol have been isolated. Using these tools for pathway engineering, two genes and two expression strategies have been employed to create transgenic peppermint plants with improved oil composition and yield. These experiments, along with related studies on other pathway genes, have led to a systematic, stepwise approach for the creation of a ‘super’ peppermint.


essential oil Menthapiperita menthofuran menthol monoterpene oil glands peppermint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis, EM, Ringer, KL, McConkey, ME, Croteau, R 2005Monoterpene metabolism: cloning, expression and characterization of menthone reductases from peppermint (Mentha × piperita)Plant Physiol137873881CrossRefPubMedGoogle Scholar
  2. Estévez, JM, Cantero, A, Reindl, A, Reichler, S, León, P 20011-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plantsJ Biol Chem2762290122909CrossRefPubMedGoogle Scholar
  3. Gershenzon, J, McConkey, ME, Croteau, RB 2000Regulation of monoterpene accumulation in leaves of peppermintPlant Physiol122205214CrossRefPubMedGoogle Scholar
  4. Lange, BM, Wildung, MR, Stauber, EJ, Sanchez, C, Pouchnik, D, Croteau, R 2000Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomesProc Natl Acad Sci USA9729342939CrossRefPubMedGoogle Scholar
  5. Li, X, Gong, Z, Koiwa, H, Niu, X, Espartero, J, Zhu, X, Veronese, P, Ruggiero, B, Bressan, RA, Weller, SC, Hasegawa, PM 2001Bar-expressing peppermint (Mentha × piperita L. var. Black Mitcham) plants are highly resistant to the glufosinate herbicide LibertyMol Breed8109118CrossRefGoogle Scholar
  6. Mahmoud, SS, Croteau, RB 2001Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthaseProc Natl Acad Sci USA9889158920CrossRefPubMedGoogle Scholar
  7. Mahmoud, SS, Croteau, RB 2003Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductaseProc Natl Acad Sci USA1001448114486CrossRefPubMedGoogle Scholar
  8. Mahmoud, SS, Willaims, M, Croteau, R 2004Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oilPhytochemistry65547554CrossRefPubMedGoogle Scholar
  9. McCaskill, D, Croteau, R 1995Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha × piperita) rely exclusively on plastid-derived isopentenyl diphosphatePlanta1974956CrossRefGoogle Scholar
  10. McCaskill, D, Gershenzon, J, Croteau, R 1992Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.)Planta187445454CrossRefGoogle Scholar
  11. McConkey, ME, Gershenzon, J, Croteau, R 2000Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint (Mentha × piperita L.)Plant Physiol122215223CrossRefPubMedGoogle Scholar
  12. Murray MJ (1969) Successful use of irradiation breeding to obtain Verticillium-resistant strains of peppermint, Mentha piperita L. In: Induced Mutations in Plants, Proceedings of the International Atomic Energy Agency, Vienna (pp. 345–371).Google Scholar
  13. Murray MJ (1971) Additional observations on mutation breeding to obtain Verticillium-resistant strains of peppermint. In: Mutation Breeding for Disease Resistance, Proceedings of the International Atomic Energy Agency, Vienna (pp. 171–195).Google Scholar
  14. Niu, X, Li, X, Veronese, P, Bressan, RA, Weller, SC, Hasegawa, PM 2000Factors affecting Agrobacterium tumefaciens-mediated transformation of peppermintPlant Cell Rep19304310CrossRefGoogle Scholar
  15. Niu, X, Lin, K, Hasegawa, PM, Bressan, RA, Weller, SC 1998Transgenic peppermint (Mentha × piperita L.) plants obtained by co-cultivation with Agrobacterium tumefaciensPlant Cell Rep17165171CrossRefGoogle Scholar
  16. Ringer, KL, Davis, EM, Croteau, R 2005Monoterpene metabolism: cloning, expression and characterization of (−)-isopiperitenol/(−)-carveol dehydrogenase from peppermint and spearmintPlant Physiol137863872CrossRefPubMedGoogle Scholar
  17. Ringer, KL, McConkey, ME, Davis, EM, Rushing, GW, Croteau, R 2003Monoterpene double-bond reductases of the (−)-menthol biosynthetic pathway: isolation and characterization of cDNAs encoding (−)-isopiperitenone reductase and (+)-pulegone reductase of peppermintArch Biochem Biophys4188092CrossRefPubMedGoogle Scholar
  18. Turner, GW, Croteau, R 2004Organization of monoterpene biosynthesis in Mentha: immunocytochemical localization of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductasePlant Physiol13642154227CrossRefPubMedGoogle Scholar
  19. Turner, GW, Gershenzon, J, Croteau, RB 2000Development of peltate glandular trichomes of peppermint (Mentha × piperita L.)Plant Physiol124665679CrossRefPubMedGoogle Scholar
  20. Wise, ML, Croteau, R 1999 Monoterpene biosynthesisCane, DE eds. Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and SteroidsElsevier ScienceOxford97153Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations