Skip to main content
Log in

Simultaneous Electro-Sensing of Guanine and Adenine on GO/Fe3O4-PMDA@Bi Nanocomposite

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Herein, we report developing an electrochemical sensor based on a glassy carbon electrode modified by bismuth nanoparticles, graphene oxide, iron oxide, and poly-methyldopa namely Bi@Fe3O4-PMDA/GO/GCE for detecting guanine and adenine. Under optimized conditions (5 μL of Fe3O4-PMDA/GO, 0.5 mg mL−1 of Fe3O4-PMDA/GO solution, water as solvent of Fe3O4-PMDA/GO and acetate buffer (0.1 M, pH 6) as electrolytes), the electrochemical behaviors of guanine and adenine on the prepared modified electrode were investigated by cyclic voltammetry and differential pulse voltammetry. With a high specific surface area and numerous active sites, Bi@Fe3O4-PMDA/GO/GCE exhibited outstanding electrocatalytic properties enabling the determination of guanine and adenine over a wide concentration range with the low detection limit. The Bi@Fe3O4-PMDA/GO/GCE possessed the advantages of simplicity, speed, good sensitivity, and anti-interference performance. Using the DPV method, the resulting sensor exhibited an excellent response with a wide linear ranges from 0.5 to 300 μM for both analytes with LODs 0.027 and 0.032 µM for adenine and guanine, respectively. The designed electrode was satisfactorily employed for the analysis of the real sample. Therefore, Bi@Fe3O4-PMDA/GO/GCE demonstrating sufficient selectivity and sensitivity for the individual and simultaneous study could be applied in widespread fields, including biotechnology or microbiology.

Graphical abstract

Schematic for simultaneous determination of guanine and adenine based on GO/Fe3O4-PMDA@Bi nanoparticles modified glassy carbon electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available at request.

References

  1. He S, He P, Zhang X, Zhang X, Dong F, Jia L, Du L, Lei H (2018) Simultaneous voltammetric determination of guanine and adenine by using a glassy carbon electrode modified with a composite consisting of carbon quantum dots and overoxidized poly(2-aminopyridine). Microchim Acta 185:107

    Article  Google Scholar 

  2. Şenocak A, Tümay SO, Ömeroğlu İ, Şanko V (2022) Crosslinker polycarbazole supported magnetite MOF@CNT hybrid material for synergetic and selective voltammetric determination of adenine and guanine. J Electroanal Chem 905:115963

    Article  Google Scholar 

  3. Ibrahim H, Temerk Y, Farhan N (2016) Electrochemical sensor for individual and simultaneous determination of guanine and adenine in biological fluids and in DNA based on a nano-In-ceria modified glassy carbon paste electrode. RSC Adv 6:90220–90231

    Article  CAS  Google Scholar 

  4. Papavasileiou AV, Trachioti MG, Hrbac J, Prodromidis MI (2022) Simultaneous determination of guanine and adenine in human saliva with graphite sparked screen-printed electrodes. Talanta 239:123119

    Article  CAS  PubMed  Google Scholar 

  5. Zhao X, Guo H, Xue R, Wang M, Guan Q, Fan T, Yang W, Yang W (2021) Electrochemical sensing and simultaneous determination of guanine and adenine based on covalent organic frameworks/NH2-rG/MoS2 modified glassy carbon electrode. Microchem J 160:105759

    Article  CAS  Google Scholar 

  6. Zhang S, Zhuang X, Chen D, Luan F, He T, Tian C, Chen L (2019) Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane. Microchim Acta 186:450

    Article  Google Scholar 

  7. Yang FQ, Guan J, Li SP (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured cordyceps using ultra-performance liquid chromatography. Talanta 73:269–273

    Article  CAS  PubMed  Google Scholar 

  8. Thomas B, Matson S, Chopra V, Sun L, Sharma S, Hersch S, Diana Rosas H, Scherzer C, Ferrante R, Matson W (2013) A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in huntington disease. Anal Biochem 436:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gill BD, Indyk HE (2007) Development and application of a liquid chromatographic method for analysis of nucleotides and nucleosides in milk and infant formulas. Int Dairy J 17:596–605

    Article  CAS  Google Scholar 

  10. Rezaei B, Khosropour H, Ensafi AA, Dinari M, Nabiyan A (2015) A new electrochemical sensor for the simultaneous determination of guanine and adenine: using a NiAl-layered double hydroxide/graphene oxide-multi wall carbon nanotube modified glassy carbon electrode. RSC Adv 5:75756–75765

    Article  CAS  Google Scholar 

  11. Yeh CF, Jiang SJ (2002) Determination of monophosphate nucleotides by capillary electrophoresis inductively coupled plasma mass spectrometry. Analyst 127:1324–1327

    Article  CAS  PubMed  Google Scholar 

  12. Heisler I, Keller J, Tauber R, Sutherland M, Fuchs H (2002) A colorimetric assay for the quantitation of free adenine applied to determine the enzymatic activity of ribosomeinactivating proteins. Anal Biochem 302:114–122

    Article  CAS  PubMed  Google Scholar 

  13. Erbao L, Bingchun X (2006) Flow injection determination of adenine at trace level based on luminol–K2Cr2O7 chemiluminescence in a micellar medium. J Pharm Biomed Anal 41:649–653

    Article  PubMed  Google Scholar 

  14. Mirmomtaz E, Ensafi AA, Soleimanian-Zad S (2009) Determination of amiloride using a ds-DNA-modified pencil graphite electrode based on guanine and adenine signals. Electrochim Acta 54:1141–1146

    Article  CAS  Google Scholar 

  15. Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B (2024) Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 249:116018

    Article  CAS  PubMed  Google Scholar 

  16. Ghovvati M, Guo L, Bolouri K, Kaneko N (2023) Advances in electroconductive polymers for biomedical sector: structure and properties. Mater Chem Horizons 2(2):125–137

    Google Scholar 

  17. Davaslıoğlu İÇ, Özdokur KV, Koçak S, Çırak Ç, Çağlar B, Çırak BB, Ertaş FN (2021) WO3 decorated TiO2 nanotube array electrode: preparation, characterization and superior photoelectrochemical performance for rhodamine B dye degradation. J Mol Struct 1241:130673

    Article  Google Scholar 

  18. Banu R, Kumara Swamy BE, Ebenso E, (2022) Voltammetric analysis of serotonin and epinephrine in the presence of guanine and adenine at Bismarck brown R amplified pencil graphite electrode. Inorg Chem Commun 144:109868

    Article  Google Scholar 

  19. Xu J, Li T, Shen S, Zhao L, Ma C, Mahmoud AE, Wang J (2015) Electrochemically reduced carboxyl graphene modified electrode for simultaneous determination of guanine and adenine. Anal Lett 48:1465–1480

    Article  CAS  Google Scholar 

  20. Arvand M, Sanayeei M, Hemmati S (2018) Label-free electrochemical DNA biosensor for guanine and adenine by ds-DNA/poly(L-cysteine)/Fe3O4 nanoparticles-graphene oxide nanocomposite modified electrode. Biosens Bioelectron 102:70–79

    Article  CAS  PubMed  Google Scholar 

  21. Arvand M, Ghodsi N, Zanjanchi MA (2016) A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine. Biosens Bioelectron 77:837–844

    Article  CAS  PubMed  Google Scholar 

  22. Ensafi AA, Jafari-Asl M, Rezaei B, Allafchian AR (2013) Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry. Sens Actuators 177:634–642

    Article  CAS  Google Scholar 

  23. Wang HB, Zhang HD, Jiang YL, Li XL, Liu YM (2016) Determination of adenine and guanine by a dopamine-melanin nanosphere–polyaniline nanocomposite modified glassy carbon electrode. Anal Lett 49:226–235

    Article  CAS  Google Scholar 

  24. Yari A, Derki S (2016) New MWCNT-Fe3O4@PDA-Ag nanocomposite as a novel sensing element of an electrochemical sensor for determination of guanine and adenine contents of DNA. Sens Actuators 227:456–466

    Article  CAS  Google Scholar 

  25. Pan Z, Guo H, Liu B, Sun L, Chen Y, Zhang H, Wu N, Lu Z, Yang W (2022) A sensitive electrochemical sensing platform based on nitrogen-rich covalent organic framework for simultaneous detection of guanine and adenine. Microporous Mesoporous Mater 340:112030

    Article  CAS  Google Scholar 

  26. Shantharaja MN, Giddaerappa SGH, Koodlur Sannegowda L (2022) Novel biocompatible amide phthalocyanine for simultaneous electrochemical detection of adenine and guanine. Microchem J 175:107223

    Article  CAS  Google Scholar 

  27. Kaimal R, Mansukhlal PN, Aljafari B, Anandan S, Ashokkumar M (2022) Ultrasound-aided synthesis of gold-loaded boron-doped graphene quantum dots interface towards simultaneous electrochemical determination of guanine and adenine biomolecules. Ultrason Sonochem 83:105921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bindewald EH, Schibelbain AF, Papi MA, Neiva EG, Zarbin AJ, Bergamini MF, Marcolino-Junior LH (2017) Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Mater Sci Eng C 79:262–269

    Article  CAS  Google Scholar 

  29. Van der Horst C, Silwana B, Iwuoha E, Somerset V (2015) Synthesis and characterization of bismuth-silver nanoparticles for electrochemical sensor applications. Anal Lett 48(8):1311–1332

    Article  Google Scholar 

  30. Arvand M, Hemmati S (2017) Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens Actuators 238:346–356

    Article  CAS  Google Scholar 

  31. Mashhadizadeh MH, Karami Z (2011) Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES. J Hazard Mater 190:1023–1029

    Article  CAS  PubMed  Google Scholar 

  32. Chawla S, Pundir CS (2011) An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core–shell magnetic bionanoparticles modified gold electrode. Biosens Bioelectron 26:3438–3443

    Article  CAS  PubMed  Google Scholar 

  33. Aadil M, Warsi MF, Agboola PO, Aboud MFA, Shakir I (2021) Direct decoration of Co3O4/r-GO nanocomposite on nickel foam for electrochemical energy storage applications. Ceram Int 47(7):9008–9016

    Article  CAS  Google Scholar 

  34. Chang WT, Chao YH, Li CW, Lin KL, Wang JJ, Kumar SR, Lue SJ (2019) Graphene oxide synthesis using microwave-assisted vs. modified hummer’s methods: efficient fillers for improved ionic conductivity and suppressed methanol permeability in Alkaline methanol fuel cell electrolytes. J Power Sources 414:86–95

    Article  CAS  Google Scholar 

  35. Laviron E (1979) The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem Interfacial Electrochem 100(1–2):263–270

    Article  CAS  Google Scholar 

  36. Golabi SM, Zare HR, Hamzehlooc M (2002) Electrochemistry and electrocatalytic activity of pyrocatechol violet (PCV) film on a glassy carbon electrode towards the oxidation of reduced nicotinamide adenine dinucleotide (NADH). Electroanalysis 14:611–618

    Article  CAS  Google Scholar 

  37. Shoup, D, Szabo, A (1984) Hopscotch: an algorithm for the numerical solution of electrochemical problems. J Electroanal Chem Interfacial Electrochem 160:1–17

    Article  CAS  Google Scholar 

  38. Oghli AH (2021) Soleymanpour A Pencil graphite electrode modified with nitrogen-doped graphene and molecular imprinted polyacrylamide/sol-gel as an ultrasensitive electrochemical sensor for the determination of fexofenadine in biological media. Biochem Eng J 167:107920

    Article  CAS  Google Scholar 

  39. Li C, Qiu X, Ling Y (2013) Electrocatalytic oxidation and the simultaneous determination of guanine and adenine on (2,6-pyridinedicarboxylic acid)/graphene composite film modified electrode. J Electroanal Chem 704:44–49

    Article  CAS  Google Scholar 

  40. Chen J, Li S, Chen Y, Yang J, Dong J (2022) Highly selective detection of adenine and guanine by NH2-MIL-53(Fe)/CS/MXene nanocomposites with excellent electrochemical performance. Microchim Acta 189:328

    Article  CAS  Google Scholar 

  41. Mao B, Qian L, Govindhan M, Liu Z, Chen A (2021) Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Microchim Acta 188:276

    Article  CAS  Google Scholar 

  42. Vishnu N, Badhulika S (2019) Single step grown MoS2 on pencil graphite as an electrochemical sensor for guanine and adenine: a novel and low cost electrode for DNA studies. Biosens Bioelectron 124–125:122–128

    Article  PubMed  Google Scholar 

  43. Guo H, Zhang T, Wang M, Sun L, Zhang J, Yang M, Yang F, Wu N, Yang W (2021) Electrochemical behavior of MOF-801/MWCNT-COOH/AuNPs: a highly selective electrochemical sensor for determination of guanine and adenine. Colloids Surf 627:127195

    Article  CAS  Google Scholar 

  44. Geng X, Bao J, Huang T, Wang X, Hou C, Hou J, Samalo M, Yang M, Huo D (2019) Electrochemical sensor for the simultaneous detection of guanine and adenine based on a PPyox/MWNTs-MoS2 modified electrode. J Electrochem Soc 166:B498–B504

    Article  CAS  Google Scholar 

  45. Wang D, Huang B, Liu J, Guo X, Abudukeyoumu G, Zhang Y, Ye BC, Li Y (2018) A novel electrochemical sensor based on Cu@Ni/MWCNTs nanocomposite for simultaneous determination of guanine and adenine. Biosens Bioelectron 102:389–395

    Article  CAS  PubMed  Google Scholar 

  46. Asl AZ, Rafati AA, Khazalpour S (2022) Electrocatalytic behavior of TiO2 / MWCNTs nanocomposite decorated on glassy carbon electrode for individual and simultaneous voltammetric determination of adenine and guanine in real samples. J Electrochem Soc 169:047516

    Article  CAS  Google Scholar 

  47. Adarakatti PS, Mahanthappa M, Siddaramanna A (2018) Fe2V4O13 nanoparticles based electrochemical sensor for the simultaneous determination of guanine and adenine at nanomolar concentration. Electroanalysis 30:1971–1982

    Article  CAS  Google Scholar 

  48. Gao S, Li H, Li M, Li C, Qian L, Yang B (2018) A gold-nanoparticle/horizontal-graphene electrode for the simultaneous detection of ascorbic acid, dopamine, uric acid, guanine, and adenine. J Solid State Electrochem 22:3245–3325

    Article  CAS  Google Scholar 

  49. Mathew MR, Anand SK, Kumar KG (2022) Simultaneous voltammetric sensing of three DNA bases guanine, adenine and thymine at poly (L-arginine)-electrochemically reduced graphene oxide composite film modified glassy carbon electrode. Ionics 28:3023–3036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the post-graduate office of Hakim Sabzevari University for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Baghayeri.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 664 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghayeri, M., Nodehi, M., Amiri, A. et al. Simultaneous Electro-Sensing of Guanine and Adenine on GO/Fe3O4-PMDA@Bi Nanocomposite. Top Catal (2024). https://doi.org/10.1007/s11244-024-01960-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01960-6

Keywords

Navigation