Skip to main content
Log in

Recent Advances on the MOFs-Based Materials for the Elimination or Utilization of Typical Gaseous Pollutants

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have ordered pore and cage structure, and its central metal ions can provide a uniform active site. Modifying MOFs or preparing MOFs composites and derivatives could enhance the properties of MOFs-based materials, such as improving stability of the framework, regulating the electronic properties near the active site, promoting oxygen migration or the formation of more active oxygen species, improving the photo-generated carrier migration, and increasing the affinity between the active site and the pollutants. In view of these advantages, MOFs-based materials show excellent performance in the removal and utilization of typical gaseous pollutants. This article summarizes the application of MOFs-based materials in the removal and utilization of typical gaseous pollutants (e.g. sulfur oxides, nitrogen oxides, carbon oxides, volatile organic compounds, and methane). The prospects and challenges of MOFs-based materials in the future research and practical work of gaseous pollutant removal are also proposed, in order to stimulate the enthusiasm for the development of more efficient MOFs-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Wen C, Liu T, Wang D, Wang Y, Chen H, Luo G, Zhou Z, Li C, Xu M (2023) Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms. Prog. Energ. Combust. 99:101098

    Article  Google Scholar 

  2. Zhao S, Yang Y, Bi F, Chen Y, Wu M, Zhang X, Wang G (2023) Oxygen vacancies in the catalyst: efficient degradation of gaseous pollutants. Chem. Eng. J. 454:140376

    Article  CAS  Google Scholar 

  3. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119:4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  PubMed  Google Scholar 

  4. Ma Y, Lu W, Han X, Chen Y, da Silva I, Lee D, Sheveleva AM, Wang Z, Li J, Li W, Fan M, Xu S, Tuna F, McInnes EJL, Cheng Y, Rudić S, Manuel P, Frogley MD, Ramirez-Cuesta AJ, Schröder M, Yang S (2022) Direct observation of ammonia storage in UiO-66 incorporating Cu(II) binding sites. J Am Chem Soc 144:8624–8632. https://doi.org/10.1021/jacs.2c00952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lyu P, Maurin G (2020) Mechanistic insight into the catalytic NO oxidation by the MIL-100 MOF platform: toward the prediction of more efficient catalysts. ACS Catal 10:9445–9450. https://doi.org/10.1021/acscatal.0c02219

    Article  CAS  Google Scholar 

  6. Li Z, Gao R, Hou Z, Yu X, Dai H, Deng J, Liu Y (2023) Tandem supported Pt and ZSM-5 catalyst with separated catalytic functions for promoting multicomponent VOCs oxidation. Appl. Catal. B: Environ. 339:123131

    Article  CAS  Google Scholar 

  7. Feng Y, Ma P, Wang Z, Shi Y, Wang Z, Peng Y, Jing L, Liu Y, Yu X, Wang X, Zhang X, Deng J, Dai H (2022) Synergistic effect of reactive oxygen species in photothermocatalytic removal of VOCs from cooking oil fumes over Pt/CeO2/TiO2. Environ Sci Technol 56:17341–17351. https://doi.org/10.1021/acs.est.2c07146

    Article  CAS  PubMed  Google Scholar 

  8. Yu X, Deng J, Liu Y, Jing L, Gao R, Hou Z, Zhang Z, Dai H (2022) Enhanced water resistance and catalytic performance of Ru/TiO2 by regulating Brønsted acid and oxygen vacancy for the oxidative removal of 1,2-dichloroethane and toluene. Environ Sci Technol 56:11739–11749. https://doi.org/10.1021/acs.est.2c03336

    Article  CAS  PubMed  Google Scholar 

  9. Guo M, Ma P, Wang J, Xu H, Zheng K, Cheng D, Liu Y, Guo G, Dai H, Duan E, Deng J (2022) Synergy in Au−CuO Janus structure for catalytic isopropanol oxidative dehydrogenation to acetone. Angew Chem Int Ed 61:e202203827. https://doi.org/10.1002/anie.202203827

    Article  CAS  Google Scholar 

  10. Wu L, Fan W, Wang X, Lin H, Tao J, Liu Y, Deng J, Jing L, Dai H (2023) Methane oxidation over the zeolites-based catalysts. Catalysts 13:604

    Article  CAS  Google Scholar 

  11. Guo M, Ma P, Wei L, Wang J, Wang Z, Zheng K, Cheng D, Liu Y, Dai H, Guo G, Duan E, Deng J (2023) Highly selective activation of C-H bond and inhibition of C–C bond cleavage by tuning strong oxidative Pd sites. J Am Chem Soc 145:11110–11120. https://doi.org/10.1021/jacs.3c00747

    Article  CAS  PubMed  Google Scholar 

  12. Jiang J, Yaghi OM (2015) Brønsted acidity in metal-organic frameworks. Chem Rev 115:6966–6997. https://doi.org/10.1021/acs.chemrev.5b00221

    Article  CAS  PubMed  Google Scholar 

  13. Qian Y, Zhang F, Pang H (2021) A review of MOFs and their composites-based photocatalysts: synthesis and applications. Adv Funct Mater 31:2104231. https://doi.org/10.1002/adfm.202104231

    Article  CAS  Google Scholar 

  14. Wang C-C, Wang X, Liu W (2020) The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review. Chem. Eng. J. 391:123601

    Article  CAS  Google Scholar 

  15. Wang C-C, Yi X-H, Wang P (2019) Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl Catal B: Environ 247:24–48

    Article  CAS  Google Scholar 

  16. Niu L, Wu T, Chen M, Yang L, Yang J, Wang Z, Kornyshev AA, Jiang H, Bi S, Feng G (2022) Conductive metal-organic frameworks for supercapacitors. Adv Mater 34:2200999. https://doi.org/10.1002/adma.202200999

    Article  CAS  Google Scholar 

  17. Mason JA, Veenstra M, Long JR (2014) Evaluating metal-organic frameworks for natural gas storage. Chem Sci 5:32–51. https://doi.org/10.1039/C3SC52633J

    Article  CAS  Google Scholar 

  18. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472. https://doi.org/10.1126/science.1067208

    Article  CAS  PubMed  Google Scholar 

  19. Lin R-B, Xiang S, Zhou W, Chen B (2020) Microporous metal-organic framework materials for gas separation. Chem 6:337–363

    Article  CAS  Google Scholar 

  20. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84. https://doi.org/10.1038/nature11893

    Article  CAS  PubMed  Google Scholar 

  21. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés i Xamena FX, Gascon J (2015) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14:48–55. https://doi.org/10.1038/nmat4113

    Article  CAS  PubMed  Google Scholar 

  22. Lin Y, Li W-H, Wen Y, Wang G-E, Ye X-L, Xu G (2021) Layer-by-layer growth of preferred-oriented MOF thin film on nanowire array for high-performance chemiresistive sensing. Angew Chem Int Ed 60:25758–25761. https://doi.org/10.1002/anie.202111519

    Article  CAS  Google Scholar 

  23. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK (2017) Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev 46:3242–3285. https://doi.org/10.1039/C6CS00930A

    Article  CAS  PubMed  Google Scholar 

  24. Zhen W, Luo T, Wang Z, Jiang X, Yuan E, Weichselbaum RR, Lin W (2023) Mechanoregulatory cholesterol oxidase-functionalized nanoscale metal-organic framework stimulates pyroptosis and reinvigorates T cells. Small 19:2305440. https://doi.org/10.1002/smll.202305440

    Article  CAS  Google Scholar 

  25. Xu Z, Zhen W, McCleary C, Luo T, Jiang X, Peng C, Weichselbaum RR, Lin W (2023) nanoscale metal-organic framework with an X-ray triggerable prodrug for synergistic radiotherapy and chemotherapy. J Am Chem Soc 145:18698–18704. https://doi.org/10.1021/jacs.3c04602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu Z, Luo T, Mao J, McCleary C, Yuan E, Lin W (2022) Monte carlo simulation-guided design of a thorium-based metal-organic framework for efficient radiotherapy-radiodynamic therapy. Angew Chem Int Ed 61:e202208685. https://doi.org/10.1002/anie.202208685

    Article  CAS  Google Scholar 

  27. Yi X-H, Ji H, Wang C-C, Li Y, Li Y-H, Zhao C, Wang A, Fu H, Wang P, Zhao X, Liu W (2021) Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: performance, mechanism, pathway and DFT calculations. Appl Catal B: Environ 293:120229

    Article  CAS  Google Scholar 

  28. Wang X, Liu W, Fu H, Yi X-H, Wang P, Zhao C, Wang C-C, Zheng W (2019) Simultaneous Cr(VI) reduction and Cr(III) removal of bifunctional MOF/Titanate nanotube composites. Environ. Pollut. 249:502–511

    Article  CAS  PubMed  Google Scholar 

  29. Yusuf VF, Malek NI, Kailasa SK (2022) Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS Omega 7:44507–44531. https://doi.org/10.1021/acsomega.2c05310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang C-W, Nguyen V-H, Zhou S-R, Hsu S-Y, Tan J-X, Wu KCW (2020) Metal-organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustain Energy Fuels 4:504–521. https://doi.org/10.1039/C9SE00972H

    Article  CAS  Google Scholar 

  31. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969. https://doi.org/10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  32. Le VN, Kwon HT, Vo TK, Kim J-H, Kim W-S, Kim J (2020) Microwave-assisted continuous flow synthesis of mesoporous metal-organic framework MIL-100 (Fe) and its application to Cu(I)-loaded adsorbent for CO/CO2 separation. Mater. Chem. Phys. 253:123278

    Article  CAS  Google Scholar 

  33. Fan M, Liao D, Aboud MFA, Shakir I, Xu Y (2020) A universal strategy toward ultrasmall hollow nanostructures with remarkable electrochemical performance. Angew Chem Int Ed 59:8247–8254. https://doi.org/10.1002/anie.202000352

    Article  CAS  Google Scholar 

  34. Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214. https://doi.org/10.1039/B513750K

    Article  CAS  Google Scholar 

  35. Safarifard V, Morsali A (2015) Applications of ultrasound to the synthesis of nanoscale metal-organic coordination polymers. Coordin Chem Rev 292:1–14

    Article  CAS  Google Scholar 

  36. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093

    Article  CAS  PubMed  Google Scholar 

  37. Mandal S, Natarajan S, Mani P, Pankajakshan A (2021) Post-synthetic modification of metal-organic frameworks toward applications. Adv Funct Mater 31:2006291. https://doi.org/10.1002/adfm.202006291

    Article  CAS  Google Scholar 

  38. Feng Y, Yao J (2022) Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coordin. Chem. Rev. 470:214699

    Article  CAS  Google Scholar 

  39. Zhuang X, Zhang S, Tang Y, Yu F, Li Z, Pang H (2023) Recent progress of MOF/MXene-based composites: synthesis, functionality and application. Coordin Chem Rev 490:215208

    Article  CAS  Google Scholar 

  40. Liu K-G, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A (2021) Metal-organic framework composites as green/sustainable catalysts. Coordin Chem Rev 436:213827

    Article  CAS  Google Scholar 

  41. Ding M, Flaig RW, Jiang H-L, Yaghi OM (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48:2783–2828. https://doi.org/10.1039/C8CS00829A

    Article  CAS  PubMed  Google Scholar 

  42. Li Y-X, Han Y-C, Wang C-C (2021) Fabrication strategies and Cr(VI) elimination activities of the MOF-derivatives and their composites. Chem Eng J 405:126648

    Article  CAS  Google Scholar 

  43. Cao X, Tan C, Sindoro M, Zhang H (2018) Correction: Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 47:5997–5997. https://doi.org/10.1039/C8CS90065E

    Article  CAS  PubMed  Google Scholar 

  44. De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC (2023) Principles of design and synthesis of metal derivatives from MOFs. Adv Mater 35:2210166. https://doi.org/10.1002/adma.202210166

    Article  CAS  Google Scholar 

  45. Ma X, Liu H, Yang W, Mao G, Zheng L, Jiang H-L (2021) Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J Am Chem Soc 143:12220–12229. https://doi.org/10.1021/jacs.1c05032

    Article  CAS  PubMed  Google Scholar 

  46. Hou S-L, Dong J, Zhao X-Y, Li X-S, Ren F-Y, Zhao J, Zhao B (2023) Thermocatalytic conversion of CO2 to valuable products activated by noble-metal-free metal-organic frameworks. Angew Chem Int Ed 62:e202305213. https://doi.org/10.1002/anie.202305213

    Article  CAS  Google Scholar 

  47. Zhao Y, Zheng L, Jiang D, Xia W, Xu X, Yamauchi Y, Ge J, Tang J (2021) Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions. Small 17:2006590. https://doi.org/10.1002/smll.202006590

    Article  CAS  Google Scholar 

  48. Gulati S, Vijayan S, Mansi KS, Harikumar B, Trivedi M, Varma RS (2023) Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coordin Chem Rev 474:214853

    Article  CAS  Google Scholar 

  49. Luo T, Gilmanova L, Kaskel S (2023) Advances of MOFs and COFs for photocatalytic CO2 reduction, H2 evolution and organic redox transformations. Coordin Chem Rev 490:215210

    Article  CAS  Google Scholar 

  50. Wu D, Zhang P-F, Yang G-P, Hou L, Zhang W-Y, Han Y-F, Liu P, Wang Y-Y (2021) Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordin Chem Rev 434:213709

    Article  CAS  Google Scholar 

  51. Sun Z, Liao Y, Zhao S, Zhang X, Liu Q, Shi X (2022) Research progress in metal–organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: characteristics, preparation, modification and applications. J Mater Chem A 10:5174–5211. https://doi.org/10.1039/D1TA07856A

    Article  CAS  Google Scholar 

  52. Zhao Y, Shao Z, Cui Y, Geng K, Meng X, Wu J, Hou H (2023) Guest-induced multilevel charge transport strategy for developing metal-organic frameworks to boost photocatalytic CO2 reduction. Small 19:2300398. https://doi.org/10.1002/smll.202300398

    Article  CAS  Google Scholar 

  53. Mu Q, Zhu W, Li X, Zhang C, Su Y, Lian Y, Qi P, Deng Z, Zhang D, Wang S, Zhu X, Peng Y (2020) Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl Catal B: Environ 262:118144

    Article  CAS  Google Scholar 

  54. Wu L-Y, Mu Y-F, Guo X-X, Zhang W, Zhang Z-M, Zhang M, Lu T-B (2019) Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Ed 58:9491–9495. https://doi.org/10.1002/anie.201904537

    Article  CAS  Google Scholar 

  55. Li N, Zhai X-P, Ma B, Zhang H-J, Xiao M-J, Wang Q, Zhang H-L (2023) Highly selective photocatalytic CO2 reduction via a lead-free perovskite/MOF catalyst. J Mater Chem A 11:4020–4029. https://doi.org/10.1039/D2TA09777J

    Article  CAS  Google Scholar 

  56. Zhao C, Zhou A, Dou Y, Zhou J, Bai J, Li J-R (2021) Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction. Chem Eng J 416:129155

    Article  CAS  Google Scholar 

  57. Han B, Ou X, Zhong Z, Liang S, Yan X, Deng H, Lin Z (2021) Photoconversion of anthropogenic CO2 into tunable syngas over industrial wastes derived metal-organic frameworks. Appl Catal B: Environ 283:119594

    Article  CAS  Google Scholar 

  58. Liang J, Yu H, Shi J, Li B, Wu L, Wang M (2023) Dislocated bilayer MOF enables high-selectivity photocatalytic reduction of CO2 to CO. Adv Mater 35:2209814. https://doi.org/10.1002/adma.202209814

    Article  CAS  Google Scholar 

  59. Wang Z, Hou P, Wang Y, Xiang X, Kang P (2019) Acidic electrochemical Reduction of CO2 using nickel nitride on multiwalled carbon nanotube as selective catalyst. ACS Sustainable Chem Eng 7:6106–6112. https://doi.org/10.1021/acssuschemeng.8b06278

    Article  CAS  Google Scholar 

  60. Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM (2019) Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv Mater 31:1804257. https://doi.org/10.1002/adma.201804257

    Article  CAS  Google Scholar 

  61. Mukhopadhyay S, Shimoni R, Liberman I, Ifraemov R, Rozenberg I, Hod I (2021) Assembly of a metal-organic framework (MOF) membrane on a solid electrocatalyst: introducing molecular-level control over heterogeneous CO2 reduction. Angew Chem Int Ed 60:13423–13429. https://doi.org/10.1002/anie.202102320

    Article  CAS  Google Scholar 

  62. Zhang Y, Jiao L, Yang W, Xie C, Jiang H-L (2021) Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew Chem Int Ed 60:7607–7611. https://doi.org/10.1002/anie.202016219

    Article  CAS  Google Scholar 

  63. Nam D-H, Shekhah O, Lee G, Mallick A, Jiang H, Li F, Chen B, Wicks J, Eddaoudi M, Sargent EH (2020) Intermediate binding control using metal-organic frameworks enhances electrochemical CO2 reduction. J Am Chem Soc 142:21513–21521. https://doi.org/10.1021/jacs.0c10774

    Article  CAS  PubMed  Google Scholar 

  64. Zhang X, Fan Y, You E, Li Z, Dong Y, Chen L, Yang Y, Xie Z, Kuang Q, Zheng L (2021) MOF encapsulated sub-nm Pd skin/Au nanoparticles as antenna-reactor plasmonic catalyst for light driven CO2 hydrogenation. Nano Energy 84:105950

    Article  CAS  Google Scholar 

  65. Zeng L, Wang Y, Li Z, Song Y, Zhang J, Wang J, He X, Wang C, Lin W (2020) Highly dispersed Ni catalyst on metal-organic framework-derived porous hydrous zirconia for CO2 methanation. ACS Appl Mater Interfaces 12:17436–17442. https://doi.org/10.1021/acsami.9b23277

    Article  CAS  PubMed  Google Scholar 

  66. Caballero A, Pérez PJ (2013) Methane as raw material in synthetic chemistry: the final frontier. Chem Soc Rev 42:8809–8820. https://doi.org/10.1039/C3CS60120J

    Article  CAS  PubMed  Google Scholar 

  67. Li H, Fei M, Troiano JL, Ma L, Yan X, Tieu P, Yuan Y, Zhang Y, Liu T, Pan X, Brudvig GW, Wang D (2023) selective methane oxidation by heterogenized iridium catalysts. J Am Chem Soc 145:769–773. https://doi.org/10.1021/jacs.2c09434

    Article  CAS  PubMed  Google Scholar 

  68. Wang W, Zhou W, Tang Y, Cao W, Docherty SR, Wu F, Cheng K, Zhang Q, Copéret C, Wang Y (2023) Selective oxidation of methane to methanol over Au/H-MOR. J Am Chem Soc 145:12928–12934. https://doi.org/10.1021/jacs.3c04260

    Article  CAS  PubMed  Google Scholar 

  69. Cui X, Shyshkanov S, Nguyen TN, Chidambaram A, Fei Z, Stylianou KC, Dyson PJ (2020) CO2 methanation via amino alcohol relay molecules employing a ruthenium nanoparticle/metal organic framework catalyst. Angew Chem Int Ed 59:16371–16375. https://doi.org/10.1002/anie.202004618

    Article  CAS  Google Scholar 

  70. Zurrer T, Wong K, Horlyck J, Lovell EC, Wright J, Bedford NM, Han Z, Liang K, Scott J, Amal R (2021) Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Adv Funct Mater 31:2007624. https://doi.org/10.1002/adfm.202007624

    Article  CAS  Google Scholar 

  71. Zurrer T, Lovell E, Han Z, Liang K, Scott J, Amal R (2023) Harnessing the structural attributes of NiMg-CUK-1 MOF for the dual-function capture and transformation of carbon dioxide into methane. Chem Eng J 455:140623

    Article  CAS  Google Scholar 

  72. Lv J, Li W, Li J, Zhu Z, Dong A, Lv H, Li P, Wang B (2023) A Triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane. Angew Chem Int Ed 62:e202217958. https://doi.org/10.1002/anie.202217958

    Article  CAS  Google Scholar 

  73. Yi J-D, Xie R, Xie Z-L, Chai G-L, Liu T-F, Chen R-P, Huang Y-B, Cao R (2020) Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding. Angew Chem Int Ed 59:23641–23648. https://doi.org/10.1002/anie.202010601

    Article  CAS  Google Scholar 

  74. Zhang Y, Zhang X-Y, Sun W-Y (2023) In situ carbon-encapsulated copper-doped cerium oxide derived from MOFs for boosting CO2-to-CH4 electro-conversion. ACS Catal 13:1545–1553. https://doi.org/10.1021/acscatal.2c05538

    Article  CAS  Google Scholar 

  75. Bai X-J, Lu X-Y, Ju R, Chen H, Shao L, Zhai X, Li Y-N, Fan F-Q, Fu Y, Qi W (2021) Preparation of MOF film/aerogel composite catalysts via substrate-seeding secondary-growth for the oxygen evolution reaction and CO2 cycloaddition. Angew Chem Int Ed 60:701–705. https://doi.org/10.1002/anie.202012354

    Article  CAS  Google Scholar 

  76. Zhang H, Si S, Zhai G, Li Y, Liu Y, Cheng H, Wang Z, Wang P, Zheng Z, Dai Y, Liu TX, Huang B (2023) The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation. Appl Catal B: Environ 337:122909

    Article  CAS  Google Scholar 

  77. Cui W-G, Zhang Q, Zhou L, Wei Z-C, Yu L, Dai J-J, Zhang H, Hu T-L (2023) Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to methanol. Small 19:2204914. https://doi.org/10.1002/smll.202204914

    Article  CAS  Google Scholar 

  78. Gutterød ES, Lazzarini A, Fjermestad T, Kaur G, Manzoli M, Bordiga S, Svelle S, Lillerud KP, Skúlason E, Øien-Ødegaard S, Nova A, Olsbye U (2020) Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: deciphering the role of the metal-organic framework. J Am Chem Soc 142:999–1009. https://doi.org/10.1021/jacs.9b10873

    Article  CAS  PubMed  Google Scholar 

  79. An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139:3834–3840. https://doi.org/10.1021/jacs.7b00058

    Article  CAS  PubMed  Google Scholar 

  80. Zhang J, An B, Li Z, Cao Y, Dai Y, Wang W, Zeng L, Lin W, Wang C (2021) Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation. J Am Chem Soc 143:8829–8837. https://doi.org/10.1021/jacs.1c03283

    Article  CAS  PubMed  Google Scholar 

  81. An B, Li Z, Song Y, Zhang J, Zeng L, Wang C, Lin W (2019) Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat Catal 2:709–717. https://doi.org/10.1038/s41929-019-0308-5

    Article  CAS  Google Scholar 

  82. Zeng L, Wang Z, Wang Y, Wang J, Guo Y, Hu H, He X, Wang C, Lin W (2020) Photoactivation of Cu centers in metal-organic frameworks for selective CO2 conversion to ethanol. J Am Chem Soc 142:75–79. https://doi.org/10.1021/jacs.9b11443

    Article  CAS  PubMed  Google Scholar 

  83. Liu C, Zhang X-D, Huang J-M, Guan M-X, Xu M, Gu Z-Y (2022) In situ reconstruction of Cu–N coordinated MOFs to generate dispersive Cu/Cu2O nanoclusters for selective electroreduction of CO2 to C2H4. ACS Catal 12:15230–15240. https://doi.org/10.1021/acscatal.2c04275

    Article  CAS  Google Scholar 

  84. Li N, Chang Z, Huang H, Feng R, He W-W, Zhong M, Madden DG, Zaworotko MJ, Bu X-H (2019) Specific K+ binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption. Small 15:1900426. https://doi.org/10.1002/smll.201900426

    Article  CAS  Google Scholar 

  85. Cui S, Shao Y, Zhong W (2023) Synthesis and characterization of novel bimetallic Mg-Ca/DOBDC metal–organic frameworks as a high stability CO2 adsorbent. Chem Eng J 474:145018

    Article  CAS  Google Scholar 

  86. Park JM, Yoo DK, Jhung SH (2020) Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: contribution of functional groups to adsorption. Chem Eng J 402:126254

    Article  CAS  Google Scholar 

  87. Choi DS, Kim DW, Kang DW, Kang M, Chae YS, Hong CS (2021) Highly selective CO2 separation from a CO2/C2H2 mixture using a diamine-appended metal–organic framework. J Mater Chem A 9:21424–21428. https://doi.org/10.1039/D1TA05869J

    Article  CAS  Google Scholar 

  88. Monni N, Andres-Garcia E, Caamaño K, García-López V, Clemente-Juan JM, Giménez-Marqués M, Oggianu M, Cadoni E, Mínguez Espallargas G, Clemente-León M, Mercuri ML, Coronado E (2021) A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO2 uptake and separation. J Mater Chem A 9:25189–25195. https://doi.org/10.1039/D1TA07436A

    Article  CAS  Google Scholar 

  89. Gebremariam SK, Mathai Varghese A, Reddy KSK, Fowad AlWahedi Y, Dumée LF, Karanikolos GN (2023) Polymer-aided microstructuring of moisture-stable GO-hybridized MOFs for carbon dioxide capture. Chem Eng J 473:145286

    Article  CAS  Google Scholar 

  90. Zhao H, Bahamon D, Khaleel M, Vega LF (2022) Insights into the performance of hybrid graphene oxide/MOFs for CO2 capture at process conditions by molecular simulations. Chem Eng J 449:137884

    Article  CAS  Google Scholar 

  91. Huang J, Yang D, Hu Z, Zhang H, Zhang Z, Wang F, Xie Y, Liu S, Wang Q, Pittman CU (2023) In situ growth of Zn-based metal–organic frameworks in ultra-high surface area nano-wood aerogel for efficient CO2 capture and separation. J Mater Chem A 11:16878–16888. https://doi.org/10.1039/D3TA02229C

    Article  CAS  Google Scholar 

  92. Mei X, Xin Y, Zhang Y, Nie W, Zhang Z, Lu P, Zhang Z, Chen G, Zhang J (2023) Electrification-enhanced low-temperature NOx storage-reduction on Pt and K Co-supported antimony-doped Tin oxides. Environ Sci Technol 57:20905–20914. https://doi.org/10.1021/acs.est.3c05354

    Article  CAS  PubMed  Google Scholar 

  93. Chen W, Zou R, Wang X (2022) Toward an atomic-level understanding of the catalytic mechanism of selective catalytic reduction of NOx with NH3. ACS Catal 12:14347–14375. https://doi.org/10.1021/acscatal.2c03508

    Article  CAS  Google Scholar 

  94. Ji Y, Liu S, Song S, Xu W, Li L, Zhang Y, Chen W, Li H, Jiang J, Zhu T, Li Z, Zhong Z, Wang D, Xu G, Su F (2023) Negatively charged single-atom Pt catalyst shows superior SO2 tolerance in NOx reduction by CO. ACS Catal 13:224–236. https://doi.org/10.1021/acscatal.2c04918

    Article  CAS  Google Scholar 

  95. Ma Y, Han X, Xu S, Wang Z, Li W, da Silva I, Chansai S, Lee D, Zou Y, Nikiel M, Manuel P, Sheveleva AM, Tuna F, McInnes EJL, Cheng Y, Rudić S, Ramirez-Cuesta AJ, Haigh SJ, Hardacre C, Schröder M, Yang S (2021) Atomically dispersed copper sites in a metal-organic framework for reduction of nitrogen dioxide. J Am Chem Soc 143:10977–10985. https://doi.org/10.1021/jacs.1c03036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun H, Liu Z, Wang Y, Quan X, Zhao G (2019) Novel metal-organic framework supported manganese oxides for the selective catalytic reduction of NOx with NH3: promotional role of the support. J Hazard Mater 380:120800

    Article  CAS  PubMed  Google Scholar 

  97. Liu Z, Wang M, Liu S, Chen Z, Yang L, Sun K, Chen Y, Zeng L, Wang W, Zhao J, Sun G, Liu B, Pan Y, Liu Y, Liu C (2020) Design of assembled composite of Mn3O4@Graphitic carbon porous nano-dandelions: a catalyst for Low–temperature selective catalytic reduction of NOx with remarkable SO2 resistance. Appl Catal B: Environ 269:118731

    Article  CAS  Google Scholar 

  98. Song K, Guo K, Mao S, Ma D, Lv Y, He C, Wang H, Cheng Y, Shi J-W (2023) Insight into the origin of excellent SO2 tolerance and de-NOx performance of quasi-Mn-BTC in the low-temperature catalytic reduction of nitrogen oxide. ACS Catal 13:5020–5032. https://doi.org/10.1021/acscatal.3c00106

    Article  CAS  Google Scholar 

  99. Gong W, Xie Y, Pham TD, Shetty S, Son FA, Idrees KB, Chen Z, Xie H, Liu Y, Snurr RQ, Chen B, Alameddine B, Cui Y, Farha OK (2022) Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. J Am Chem Soc 144:3737–3745. https://doi.org/10.1021/jacs.2c00011

    Article  CAS  PubMed  Google Scholar 

  100. Fan Y, Yin M, Krishna R, Feng X, Luo F (2021) Constructing a robust gigantic drum-like hydrophobic [Co24U6] nanocage in a metal–organic framework for high-performance SO2 removal in humid conditions. J Mater Chem A 9:4075–4081. https://doi.org/10.1039/D0TA10004H

    Article  CAS  Google Scholar 

  101. Yao J, Zhao Z, Yu L, Huang J, Shen S, Zhao S, Wu Y, Tian X, Wang J, Xia Q (2023) Boosting trace SO2 adsorption and separation performance by the modulation of the SBU metal component of iron-based bimetal MOFs. J Mater Chem A 11:14728–14737. https://doi.org/10.1039/D3TA02223D

    Article  CAS  Google Scholar 

  102. Xiong X-H, Wei Z-W, Wang W, Meng L-L, Su C-Y (2023) Scalable and depurative zirconium metal-organic framework for deep flue-gas desulfurization and SO2 recovery. J Am Chem Soc 145:14354–14364. https://doi.org/10.1021/jacs.3c03309

    Article  CAS  PubMed  Google Scholar 

  103. Ma Y, Li A, Wang C (2023) Experimental study on adsorption removal of SO2 in flue gas by defective UiO-66. Chem Eng J 455:140687

    Article  CAS  Google Scholar 

  104. Xing S, Liang J, Brandt P, Schäfer F, Nuhnen A, Heinen T, Boldog I, Möllmer J, Lange M, Weingart O, Janiak C (2021) capture and separation of SO2 traces in metal-organic frameworks via pre-synthetic pore environment tailoring by methyl groups. Angew Chem Int Ed 60:17998–18005. https://doi.org/10.1002/anie.202105229

    Article  CAS  Google Scholar 

  105. Chen F, Lai D, Guo L, Wang J, Zhang P, Wu K, Zhang Z, Yang Q, Yang Y, Chen B, Ren Q, Bao Z (2021) Deep desulfurization with record SO2 adsorption on the metal-organic frameworks. J Am Chem Soc 143:9040–9047. https://doi.org/10.1021/jacs.1c02176

    Article  CAS  PubMed  Google Scholar 

  106. Ma Y, Wang L, Ma J, Wang H, Zhang C, Deng H, He H (2021) Investigation into the enhanced catalytic oxidation of o-xylene over MOF-derived Co3O4 with different shapes: the role of surface twofold-coordinate lattice oxygen (O2f). ACS Catal 11:6614–6625. https://doi.org/10.1021/acscatal.1c01116

    Article  CAS  Google Scholar 

  107. Paier J, Penschke C, Sauer J (2013) oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113:3949–3985. https://doi.org/10.1021/cr3004949

    Article  CAS  PubMed  Google Scholar 

  108. Jiang Y, Gao J, Zhang Q, Liu Z, Fu M, Wu J, Hu Y, Ye D (2019) Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template. Chem Eng J 371:78–87

    Article  CAS  Google Scholar 

  109. Li Y, Han W, Wang R, Weng L-T, Serrano-Lotina A, Bañares MA, Wang Q, Yeung KL (2020) Performance of an aliovalent-substituted CoCeOx catalyst from bimetallic MOF for VOC oxidation in air. Appl Catal B: Environ 275:119121

    Article  CAS  Google Scholar 

  110. Zhang X, Bi F, Zhu Z, Yang Y, Zhao S, Chen J, Lv X, Wang Y, Xu J, Liu N (2021) The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation. Appl Catal B: Environ 297:120393

    Article  CAS  Google Scholar 

  111. Chen B, Yang X, Zeng X, Huang Z, Xiao J, Wang J, Zhan G (2020) Multicomponent metal oxides derived from Mn-BTC anchoring with metal acetylacetonate complexes as excellent catalysts for VOCs and CO oxidation. Chem. Eng. J. 397:125424

    Article  CAS  Google Scholar 

  112. Ma Y, Wang L, Ma J, Liu F, Einaga H, He H (2022) Improved and reduced performance of Cu- and Ni-substituted Co3O4 catalysts with varying CoOh/CoTd and Co3+/Co2+ ratios for the complete catalytic oxidation of VOCs. Environ Sci Technol 56:9751–9761. https://doi.org/10.1021/acs.est.2c02450

    Article  CAS  PubMed  Google Scholar 

  113. Wang Q, Li Y, Serrano-Lotina A, Han W, Portela R, Wang R, Bañares MA, Yeung KL (2021) Operando investigation of toluene oxidation over 1D Pt@CeO2 derived from Pt cluster-containing MOF. J Am Chem Soc 143:196–205. https://doi.org/10.1021/jacs.0c08640

    Article  CAS  PubMed  Google Scholar 

  114. Qin J, Pei Y, Zheng Y, Ye D, Hu Y (2023) Fe-MOF derivative photocatalyst with advanced oxygen reduction capacity for indoor pollutants removal. Appl Catal B: Environ 325:122346

    Article  CAS  Google Scholar 

  115. Gao Z, Wang J, Muhammad Y, Zhang Y, Shah SJ, Hu Y, Chu Z, Zhao Z, Zhao Z (2020) Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation. Chem Eng J 388:124389

    Article  CAS  Google Scholar 

  116. Chen L, Wang X, Rao Z, Tang Z, Wang Y, Shi G, Lu G, Xie X, Chen D, Sun J (2021) In-situ synthesis of Z-Scheme MIL-100(Fe)/α-Fe2O3 heterojunction for enhanced adsorption and Visible-light photocatalytic oxidation of O-xylene. Chem Eng J 416:129112

    Article  CAS  Google Scholar 

  117. Wang X, Wu L, Wang Z, Feng Y, Liu Y, Dai H, Wang Z, Deng J (2023) Photothermal synergistic catalytic oxidation of ethyl acetate over MOFs-derived mesoporous N-TiO2 supported Pd catalysts. Appl Catal B: Environ 322:122075

    Article  CAS  Google Scholar 

  118. Li J, Mo S, Ding X, Huang L, Zhou X, Fan Y, Zhang Y, Fu M, Xie Q, Ye D (2023) Hollow cavity engineering of MOFs-derived hierarchical MnOx structure for highly efficient photothermal degradation of ethyl acetate under light irradiation. Chem Eng J 464:142412

    Article  CAS  Google Scholar 

  119. He X, Looker BG, Dinh KT, Stubbs AW, Chen T, Meyer RJ, Serna P, Román-Leshkov Y, Lancaster KM, Dincă M (2020) Cerium(IV) enhances the catalytic oxidation activity of single-site cu active sites in MOFs. ACS Catal 10:7820–7825. https://doi.org/10.1021/acscatal.0c02493

    Article  CAS  Google Scholar 

  120. Shen H-M, Wang X, Huang H, Liu Q-P, Lv D, She Y-B (2022) Staged oxidation of hydrocarbons with simultaneously enhanced conversion and selectivity employing O2 as oxygen source catalyzed by 2D metalloporphyrin-based MOFs possessing bimetallic active centers. Chem Eng J 443:136126

    Article  CAS  Google Scholar 

  121. Shakya DM, Ejegbavwo OA, Rajeshkumar T, Senanayake SD, Brandt AJ, Farzandh S, Acharya N, Ebrahim AM, Frenkel AI, Rui N, Tate GL, Monnier JR, Vogiatzis KD, Shustova NB, Chen DA (2019) Selective catalytic chemistry at rhodium(II) nodes in bimetallic metal-organic frameworks. Angew Chem Int Ed 58:16533–16537. https://doi.org/10.1002/anie.201908761

    Article  CAS  Google Scholar 

  122. Xu C, Pan Y, Wan G, Liu H, Wang L, Zhou H, Yu S-H, Jiang H-L (2019) Turning on visible-light photocatalytic C−H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J Am Chem Soc 141:19110–19117. https://doi.org/10.1021/jacs.9b09954

    Article  CAS  PubMed  Google Scholar 

  123. Suginome S, Sato H, Hori A, Mishima A, Harada Y, Kusaka S, Matsuda R, Pirillo J, Hijikata Y, Aida T (2019) One-step synthesis of an adaptive nanographene MOF: adsorbed gas-dependent geometrical diversity. J Am Chem Soc 141:15649–15655. https://doi.org/10.1021/jacs.9b07732

    Article  CAS  PubMed  Google Scholar 

  124. Vikrant K, Kim K-H, Kumar V, Giannakoudakis DA, Boukhvalov DW (2020) Adsorptive removal of an eight-component volatile organic compound mixture by Cu-, Co-, and Zr-metal-organic frameworks: experimental and theoretical studies. Chem Eng J 397:125391

    Article  CAS  Google Scholar 

  125. Lv Y, Wu S, Li N, Cui P, Wang H, Amirkhanian S, Zhao Z (2023) Performance and VOCs emission inhibition of environmentally friendly rubber modified asphalt with UiO-66 MOFs. J Clean Prod 385:135633

    Article  CAS  Google Scholar 

  126. Zheng X, Rehman S, Zhang P (2023) Room temperature synthesis of monolithic MIL-100(Fe) in aqueous solution for energy-efficient removal and recovery of aromatic volatile organic compounds. J Hazard Mater 442:129998

    Article  CAS  PubMed  Google Scholar 

  127. Liu B, Younis SA, Kim K-H (2021) The dynamic competition in adsorption between gaseous benzene and moisture on metal-organic frameworks across their varying concentration levels. Chem Eng J 421:127813

    Article  CAS  Google Scholar 

  128. Wang J, Muhammad Y, Gao Z, Jalil Shah S, Nie S, Kuang L, Zhao Z, Qiao Z, Zhao Z (2021) Implanting polyethylene glycol into MIL-101(Cr) as hydrophobic barrier for enhancing toluene adsorption under highly humid environment. Chem Eng J 404:126562

    Article  CAS  Google Scholar 

  129. Antil N, Chauhan M, Akhtar N, Newar R, Begum W, Malik J, Manna K (2022) Metal-organic framework-encaged monomeric cobalt(III) hydroperoxides enable chemoselective methane oxidation to methanol. ACS Catal 12:11159–11168. https://doi.org/10.1021/acscatal.2c02823

    Article  CAS  Google Scholar 

  130. Sui J, Gao M-L, Qian B, Liu C, Pan Y, Meng Z, Yuan D, Jiang H-L (2023) Bioinspired microenvironment modulation of metal–organic framework-based catalysts for selective methane oxidation. Sci Bull 68:1886–1893

    Article  CAS  Google Scholar 

  131. Li H, Xiong C, Fei M, Ma L, Zhang H, Yan X, Tieu P, Yuan Y, Zhang Y, Nyakuchena J, Huang J, Pan X, Waegele MM, Jiang D-e, Wang D (2023) Selective formation of acetic acid and methanol by direct methane oxidation using rhodium single-atom catalysts. J Am Chem Soc 145:11415–11419. https://doi.org/10.1021/jacs.3c03113

    Article  CAS  PubMed  Google Scholar 

  132. Antil N, Chauhan M, Akhtar N, Kalita R, Manna K (2023) Selective methane oxidation to acetic acid using molecular oxygen over a mono-copper hydroxyl catalyst. J Am Chem Soc 145:6156–6165. https://doi.org/10.1021/jacs.2c12042

    Article  CAS  PubMed  Google Scholar 

  133. Fang G, Hu J-N, Tian L-C, Liang J-X, Lin J, Li L, Zhu C, Wang X (2022) Zirconium-oxo nodes of MOFs with tunable electronic properties provide effective ⋅OH species for enhanced methane hydroxylation. Angew Chem Int Ed 61:e202205077. https://doi.org/10.1002/anie.202205077

    Article  CAS  Google Scholar 

  134. Fang G, Wei F, Lin J, Zhou Y, Sun L, Shang X, Lin S, Wang X (2023) Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. J Am Chem Soc 145:13169–13180. https://doi.org/10.1021/jacs.3c02121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U23A20120), Natural Science Foundation of Hebei Province (B2021208033), and R&D Program of Beijing Municipal Education Commission (KZ202210005011).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JD; methodology, ZZ, YL and HD, writing-original draft preparation, XW and ZW; writing-review and editing, XW and JD; funding acquisition, JD. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jiguang Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This paper is original work by author and not submitted or published elsewhere. The paper gives due to credit to all the co-authors and co-researchers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Z., Liu, Y. et al. Recent Advances on the MOFs-Based Materials for the Elimination or Utilization of Typical Gaseous Pollutants. Top Catal (2024). https://doi.org/10.1007/s11244-024-01947-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01947-3

Keywords

Navigation