Skip to main content
Log in

Box–Behnken Design to Optimize Herbicide Decomposition Using an Eco-Friendly Photocatalyst Based on Carbon Dots from Coffee Waste Combined with ZnBi2O4 and Its Antibacterial Application

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A Box–Behnken design (BBD) for a response surface methodology with five factors and three levels was applied to design 2,4-D degradation experiments under visible light. To optimize the experimental conditions, the five factors included the amount of Cdots in a Cdots (x%)-ZnBi2O4 catalyst (x = 0–2%), the decomposition time (90–120 min), the initial 2,4-D concentration (30–40 mg/L), the catalyst dosage (0.5–1.5 mg/L), and the pH (2–7), and these were selected as independent variables. The BBD method proposed a second-order polynomial equation that fitted the experimental data perfectly. The results of the analysis of variance (ANOVA) confirmed the appropriateness of the proposed model, resulting in the relationship between the predicted and adjusted values having an R2 value of 0.9980. The optimal conditions for the photodecomposition of 2,4-D were found to be an initial 2,4-D concentration of 30 mg/L, a degradation time of 120 min, a Cdots(2%)-ZnBi2O4 dosage of 1.0 mg/L, and a pH of 4.0. Under these conditions, the highest 2,4-D photodecomposition of 91.1% was obtained, which was in reasonable agreement with the predicted value of 91.67%. After 6 consecutive reaction cycles, the photodecomposition efficiency still exceeded 81%. The results confirmed that the Cdots(2%)-ZnBi2O4 photocatalyst has excellent reusability. Moreover, the lowest concentration of Cdots(2%)-ZnBi2O4 that inhibited the growth of E. coli (ATCC 8793) and S. aureus (ATCC 6538) was 150 µg/mL, with an inhibition zone of 18–19 nm for E coli and about 15 mm for S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Ren G, Han H, Wang Y, Liu S, Zhao J, Meng X, Li Z (2021) Recent advances of photocatalytic application in water treatment: a review. Nanomaterials 11:1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu M, Zhang W-D (2016) Facile Preparation of AgI/Bi2MoO6 heterostructured photocatalysts with enhanced photocatalytic activity. Eur J Inorg Chem 2016:826–831

    Article  CAS  Google Scholar 

  3. Cui L, Ren X, Sun M, Liu H, Xia L (2021) Carbon dots: synthesis, properties and applications. Nanomaterials 11:3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shabbir H, Csapó E, Wojnicki M (2023) Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics 11:262

    Article  CAS  Google Scholar 

  5. Huy BT, Jung D-S, Kim Phuong NT, Lee Y-I (2017) Enhanced photodegradation of 2,4-dichlorophenoxyacetic acid using a novel TiO2@MgFe2O4 core@shell structure. Chemosphere 184:849–856

    Article  CAS  PubMed  Google Scholar 

  6. Huy BT, Paeng DS, Thi Bich Thao C, Kim Phuong NT, Lee YI (2020) ZnO-Bi2O3/graphitic carbon nitride photocatalytic system with H2O2-assisted enhanced degradation of Indigo carmine under visible light. Arab J Chem 13:3790–3800

    Article  Google Scholar 

  7. Huy BT, Thao CTB, Dao V-D, Phuong NTK, Lee Y-I (2017) A mixed-metal oxides/graphitic carbon nitride: high visible light photocatalytic activity for efficient mineralization of rhodamine B. Adv Mater Interfaces 4:1700128

    Article  Google Scholar 

  8. Tho NTM, Huy BT, Khanh DNN, Thang NQ, Dieu NTP, Duong BD, Kim Phuong NT (2018) Mechanism of visible-light photocatalytic mineralization of indigo carmine using ZnBi2O4-Bi2S3 composites. ChemistrySelect 3:9986–9994

    Article  Google Scholar 

  9. Tho NTM, Huy BT, Khanh DNN, Ha HNN, Huy VQ, Vy NTT, Huy DM, Dat DP, Phuong NTK (2018) Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B. Korean J Chem Eng 35:2442–2451

    Article  CAS  Google Scholar 

  10. Tho NTM, Khanh DNN, Thang NQ, Lee YI, Kim Phuong NT (2020) Novel reduced graphene oxide/ZnBi2O4 hybrid photocatalyst for visible light degradation of 2,4-dichlorophenoxyacetic acid. Environ Sci Pollut Res Int 27:11127–11137

    Article  PubMed  Google Scholar 

  11. Huy BT, Nhi PT, Vy NTT, Khanh DNN, Tho NTM, Thang NQ, Sy DT, Minh BQ, Kim Phuong NT (2022) Design of novel p-n heterojunction ZnBi2O4-ZnS photocatalysts with impressive photocatalytic and antibacterial activities under visible light. Environ Sci Pollut Res Int 29:84471–84486

    Article  CAS  PubMed  Google Scholar 

  12. Lv X, Xiao X, Cao M, Yi Bu, Wang C, Wang M, Shen Y (2018) Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Appl Surf Sci 439:1065–1071

    Article  CAS  Google Scholar 

  13. Tuong Vy NT, Nha Khanh DN, Nghia NN, Khoa LH, Nhi PT, Hung LX, Minh Phuong DT, Kim Phuong NT (2023) Key role of corncob based-hydrochar (HC) in the enhancement of visible light photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid using a derivative of ZnBi-layered double hydroxides. Materials (Basel) 16:5027

    Article  CAS  PubMed  Google Scholar 

  14. Muthukrishnaraj A, Vadivel S, Joni IM, Balasubramanian N (2015) Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation. Ceram Int 41:6164–6168

    Article  CAS  Google Scholar 

  15. Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light Irradiation. J Phys Chem C 111:7574–7577

    Article  CAS  Google Scholar 

  16. Wang L, Huang T, Yang G, Lu C, Dong F, Li Y, Guan W (2020) The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 heterostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight. J Hazard Mater 381:120956

    Article  CAS  PubMed  Google Scholar 

  17. Elaziouti A, Laouedj N, Bekka A, Vannier R-N (2015) Preparation and characterization of p–n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation. J King Saud Univ Sci 27:120–135

    Article  Google Scholar 

  18. Abdelkader E, Nadjia L, Ahmed B (2015) Preparation and characterization of novel CuBi2O4/SnO2 p–n heterojunction with enhanced photocatalytic performance under UVA light irradiation. J King Saud Univ Sci 27:76–91

    Article  Google Scholar 

  19. Guo F, Shi W, Wang H, Huang H, Liu Y, Kang Z (2017) Fabrication of a CuBi2O4/g-C3N4 p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation. Inorg Chem Front 4:1714–1720

    Article  CAS  Google Scholar 

  20. Lee J, Yoon H, Kim S, Seo S, Song J, Choi B-U, Choi SY, Park H, Ryu S, Oh J, Lee S (2019) Long-term stabilized high-density CuBi2O4/NiO heterostructure thin film photocathode grown by pulsed laser deposition. ChemComm 55:12447–12450

    CAS  Google Scholar 

  21. Monny SA, Zhang L, Wang Z, Luo B, Konarova M, Du A, Wang L (2020) Fabricating highly efficient heterostructured CuBi2O4 photocathodes for unbiased water splitting. J Mater Chem A 8:2498–2504

    Article  CAS  Google Scholar 

  22. Deng Y, Chen M, Chen G, Zou W, Zhao Y, Zhang H, Zhao Q (2021) Visible-ultraviolet upconversion carbon quantum dots for enhancement of the photocatalytic activity of titanium dioxide. ACS Omega 6:4247–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang F, Yang H, Zhang Y (2018) Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires. Mater Sci Semicond Process 73:58–66

    Article  CAS  Google Scholar 

  24. Shi J, Ni G, Tu J, Jin X, Peng J (2017) Green synthesis of fluorescent carbon dots for sensitive detection of Fe2+ and hydrogen peroxide. J Nanoparticle Res 19:209

    Article  Google Scholar 

  25. Li Z, Lu D, Gao X (2021) Optimization of mixture proportions by statistical experimental design using response surface method—a review. J Build Eng 36:102101

    Article  Google Scholar 

  26. Senthilkumar S, Perumalsamy M, Prabhu H, AhmedBasha C, Swaminathan G (2013) Box behnken design based optimization of solar induced photo catalytic decolourization of textile dye effluent. Cent Eur J Eng 3:135–144

    CAS  Google Scholar 

  27. Berkani M, Kadmi Y, Bouchareb MK, Bouhelassa M, Bouzaza A (2020) Combinatıon of a Box-Behnken design technique with response surface methodology for optimization of the photocatalytic mineralization of C.I. Basic Red 46 dye from aqueous solution. Arab J Chem 13:8338–8346

    Article  CAS  Google Scholar 

  28. Chong MN, Zhu HY, Jin B (2010) Response surface optimization of photocatalytic process for degradation of Congo Red using H-titanate nanofiber catalyst. Chem Eng J 156:278–285

    Article  CAS  Google Scholar 

  29. Annadurai G, Sivakumar T, Rajesh Babu S (2000) Photocatalytic decolorization of congo red over ZnO powder using Box-Behnken design of experiments. Bioprocess Eng 23:167–173

    Article  CAS  Google Scholar 

  30. Cho I-H, Zoh K-D (2007) Photocatalytic degradation of azo dye (reactive red 120) in TiO2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes Pigm 75:533–543

    Article  CAS  Google Scholar 

  31. Rauf MA, Marzouki N, Körbahti BK (2008) Photolytic decolorization of rose bengal by UV/H2O2 and data optimization using response surface method. J Hazard Mater 159:602–609

    Article  CAS  PubMed  Google Scholar 

  32. Kweinor Tetteh E, Obotey Ezugbe E, Asante-Sackey D, Armah EK, Rathilal S (2021) Response surface methodology: photocatalytic degradation kinetics of basic blue 41 dye using activated carbon with TiO2. Molecules 26:1068

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tafreshi N, Sharifnia S, Moradi Dehaghi S (2017) Box-Behnken experimental design for optimization of ammonia photocatalytic degradation by ZnO/Oak charcoal composite. Process Saf Environ Prot 106:203–210

    Article  CAS  Google Scholar 

  34. Danion A, Bordes C, Disdier J, Gauvrit J-Y, Guillard C, Lantéri P, Jaffrezic-Renault N (2004) Optimization of a single TiO2-coated optical fiber reactor using experimental design. J Photochem Photobiol A 168:161–167

    Article  CAS  Google Scholar 

  35. Berkani M, Bouhelassa M, Bouchareb MK (2019) Implementation of a venturi photocatalytic reactor: optimization of photodecolorization of an industrial azo dye. Arab J Chem 12:3054–3063

    Article  CAS  Google Scholar 

  36. Bouchareb MK-E, Bouhelassa M, Berkani M (2014) Optimization of photocatalytic decolorization of C.I. Basic Blue 41 in semi-pilot scale prototype solar photoreactor. J Chem Technol Biotechnol 89:1211–1218

    Article  CAS  Google Scholar 

  37. Madjene F, Assassi M, Chokri I, Enteghar T, Lebik H (2021) Optimization of photocatalytic degradation of rhodamine B using Box-Behnken experimental design: mineralization and mechanism. Water Environ Res 93:112–122

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Zhu C, Huang R, Ding Y, Ruan C, Shen X-C (2021) Mechanisms of reactive oxygen species generated by inorganic nanomaterials for cancer therapeutics. Front Chem 9:630969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fasnacht M, Polacek N (2021) Oxidative stress in bacteria and the central dogma of molecular biology. Front Mol Biosci 8:671037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang W, Hu X, Shen Q, Xing D (2019) Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun 10:1704

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hassanzadeh-Afruzi F, Amiri-Khamakani Z, Bahrami S, Ahghari MR, Maleki A (2022) Assessment of catalytic and antibacterial activity of biocompatible agar supported ZnS/CuFe2O4 magnetic nanotubes. Sci Rep 12:4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dânoun K, Tabit R, Laghzizil A, Zahouily M (2021) A novel approach for the synthesis of nanostructured Ag3PO4 from phosphate rock: high catalytic and antibacterial activities. BMC Chemistry 15:42

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ma C-M, Cheng C-L, Lee S-C, Hong G-B (2018) Antioxidant capacity, insecticidal ability and heat-oxidation stability of tagetes lemmonii leaf extract. Ecotoxicol Environ Saf 151:68–75

    Article  CAS  PubMed  Google Scholar 

  44. Hong G-B, Wang Y-K (2017) Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology. Appl Surf Sci 423:800–809

    Article  CAS  Google Scholar 

  45. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  46. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  PubMed  Google Scholar 

  47. Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A, Thakur VK (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769

    Article  CAS  Google Scholar 

  48. Cai J, Zhou M, Yang W, Pan Y, Lu X, Serrano KG (2018) Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation. Chemosphere 212:784–793

    Article  CAS  PubMed  Google Scholar 

  49. Amiri F, Dehghani M, Amiri Z, Yousefinejad S, Azhdarpoor A (2021) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid from aqueous solutions by Ag3PO4/TiO2 nanoparticles under visible light: kinetic and thermodynamic studies. Water Sci Technol 83:3110–3122

    Article  CAS  PubMed  Google Scholar 

  50. Tang Y, Luo S, Teng Y, Liu C, Xu X, Zhang X, Chen L (2012) Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. J Hazard Mater 241–242:323–330

    Article  PubMed  Google Scholar 

  51. Ebrahimi R, Mohammadi M, Maleki A, Jafari A, Shahmoradi B, Rezaee R, Safari M, Daraei H, Giahi O, Yetilmezsoy K, Puttaiah H, Harikaranahalli S (2020) Photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid in aqueous solution using Mn-doped ZnO/graphene nanocomposite under LED radiation. J Inorg Organomet Polym Mater 30:923–934

    Article  CAS  Google Scholar 

  52. Shankar MV, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V (2006) Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2. Chemosphere 63:1014–1021

    Article  CAS  PubMed  Google Scholar 

  53. Dogdu G, Ökten HE, Yalcuk A (2018) The heterogeneous photocatalytic degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D): Its performance, kinetics and economic analysis. Desalin Water Treat 137:312–327

    Google Scholar 

  54. Lin W, Yu X, Shen Y, Chen H, Zhu Y, Zhang Y, Meng H (2017) Carbon dots/BiOCl films with enhanced visible light photocatalytic performance. J Nanoparticle Res 19:56

    Article  Google Scholar 

  55. Xia J, Di J, Li H, Xu H, Li H, Guo S (2016) Ionic liquid-induced strategy for carbon quantum dots/BiOX (X=Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl Catal B 181:260–269

    Article  CAS  Google Scholar 

  56. Jucker BA, Harms H, Zehnder AJ (1996) Adhesion of the positively charged bacterium stenotrophomonas (xanthomonas) maltophilia 70401 to glass and teflon. J Bacteriol 178:5472–5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Vietnam Academy of Science and Technology (VAST) under grant number THTETN.08/23-24.

Author information

Authors and Affiliations

Authors

Contributions

Nguyen Thi Thanh Huong: investigation, visualization, writing-original draft. Dang Nguyen Nha Khanh, Ngo Thi Tuong Vy, Le Hai Khoa: validation, investigation. Nguyen Ngoc Nghia: conceptualization, writing-original draft. Nguyen Thi Kim Phuong: conceptualization, supervision, writing-review and editing. All authors read, commented, and approved the final manuscript.

Corresponding authors

Correspondence to Nguyen Ngoc Nghia or Nguyen Thi Kim Phuong.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5526 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, N.T.T., Khanh, D.N.N., Vy, N.T.T. et al. Box–Behnken Design to Optimize Herbicide Decomposition Using an Eco-Friendly Photocatalyst Based on Carbon Dots from Coffee Waste Combined with ZnBi2O4 and Its Antibacterial Application. Top Catal (2024). https://doi.org/10.1007/s11244-024-01934-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01934-8

Keywords

Navigation