Skip to main content
Log in

Nanomodified Geopolymers with Copper Ferrites for Methylene Blue Degradation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic properties of copper ferrites can be exploited in the degradation of organic contaminants in aqueous media, such as methylene blue. The interaction of ferrites with electromagnetic radiation results in the formation of chemical species capable of acting in the degradation of methylene blue molecules. The incorporation of these nanomaterials into geopolymeric matrices makes it possible to produce polymeric nanocomposites with improved properties. Geopolymers loaded with different percentages of copper ferrites were placed in contact with a solution of methylene blue, exposed to UV light and it was possible to observe photocatalytic activity in the degradation of this dye. Analysis in a UV–Vis spectrophotometer, at the maximum absorbance wavelength of the dye equivalent to 670 nm, showed that the geopolymer loaded with 2% copper ferrites was more effective in degrading methylene blue. These results display the potential of copper ferrite-loaded geopolymers as viable photocatalysts for organic pollutant remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Tech 87:1–14. https://doi.org/10.1016/j.seppur.2011.11.034

    Article  CAS  Google Scholar 

  2. Kefeni KK, Msagati TAM, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B 215:37–55. https://doi.org/10.1016/j.mseb.2016.11.002

    Article  CAS  Google Scholar 

  3. Masunga N, Mmelesi OK, Kefeni KK, Mamba BB (2019) Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: review. J Environ Chem Eng 7:103179. https://doi.org/10.1016/j.jece.2019.103179

    Article  CAS  Google Scholar 

  4. Balaraman S, Iruson B, Krishnmoorthy S, Elayaperumal M (2021). In: Khan M (ed) The presented study of Zn-Cu ferrites for their application in “photocatalytic activities.” IntechOpen (https://www.intechopen.com/chapters/78001)

    Chapter  Google Scholar 

  5. Ghasemi A (2022) Magnetic ferrites and related nanocomposites. Elsevier, Amsterdam

    Google Scholar 

  6. Chaibakhsh N, Moradi-Shoeili Z (2019) Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications. Mater Sci Eng C 99:1424–1447. https://doi.org/10.1016/j.msec.2019.02.086

    Article  CAS  Google Scholar 

  7. Rani BJ, Saravanakumar B, Ravi G, Ganesh V, Ravichandran S, Yuvakkumar R (2018) Structural, optical and magnetic properties of CuFe2O4 nanoparticles. J Mater Sci Mater Electron 29:1975–1984. https://doi.org/10.1007/s10854-017-8108-7

    Article  CAS  Google Scholar 

  8. Jarusheh HS, Yusuf A, Banat F, Haija MA, Palmisano G (2022) Integrated photocatalytic technologies in water treatment using ferrites nanoparticles. J Environ Chem Eng 10:108204. https://doi.org/10.1016/j.jece.2022.108204

    Article  CAS  Google Scholar 

  9. Mmelesi OK, Masunga N, Kuvarega A, Nkambule TTI, Mamba BB, Kefeni KK (2021) Cobalt ferrite nanoparticles and nanocomposites: photocatalytic, antimicrobial activity and toxicity in water treatment. Mater Sci Semi Process 123:105523. https://doi.org/10.1016/j.mssp.2020.105523

    Article  CAS  Google Scholar 

  10. Camacho-González MA, Quezada-Cruz M, Cerón-Montes GI, Ramírez-Ayala MF, Hernández-Cruz LE, Garrido-Hernández A (2019) Synthesis and characterization of magnetic zinc-copper ferrites: antibacterial activity, photodegradation study and heavy metals removal evaluation. Mater Chem Phys 236:121808. https://doi.org/10.1016/j.matchemphys.2019.121808

    Article  CAS  Google Scholar 

  11. Karcıoğlu Karakaş Z (2022) A comprehensive study on the production and photocatalytic activity of copper ferrite nanoparticles synthesized by microwave-assisted combustion method as an effective photocatalyst. J Phys Chem Sol 170:110927. https://doi.org/10.1016/j.jpcs.2022.110927

    Article  CAS  Google Scholar 

  12. Satheeshkumar MK, Ranjith Kumar E, Srinivas Ch, Prasad G, Meena SS, Pradeep I, Suriyanarayanan N, Sastry DL (2019) Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. J Magn Magn Mater 484:120–125. https://doi.org/10.1016/j.jmmm.2019.03.128

    Article  CAS  Google Scholar 

  13. Davidovits J (1989) Geopolymers and geopolymeric materials. J Therm Anal 35:429–441. https://doi.org/10.1007/BF01904446

    Article  CAS  Google Scholar 

  14. Davidovits J (2017) Geopolymers: ceramic-like inorganic polymers. J Ceram Sci Tech 8:335–350. https://doi.org/10.4416/JCST2017-00038

    Article  Google Scholar 

  15. Davidovits J (2020) Geopolymer chemistry and applications. Geopolymer Institute, Saint-Quentin

    Google Scholar 

  16. Canevarolo SV (2002) Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. São Paulo, Artliber

    Google Scholar 

  17. Wang H, Li H, Yan F (2005) Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf A 268:1–6. https://doi.org/10.1016/j.colsurfa.2005.01.016

    Article  CAS  Google Scholar 

  18. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  19. Tchakoute Kouamo H, Elimbi A, Mbey JA, Ngally Sabouang CJ, Njopwouo D (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Const Build Mater 35:960–969. https://doi.org/10.1016/j.conbuildmat.2012.04.023

    Article  Google Scholar 

  20. Ji Z, Zhang Y, Qi X, Wang Y, Xia X, Pei Y (2021) Low-cost and facile fabrication of recyclable and reusable waste-based geopolymer for visible-light photocatalysis degradation. J Clean Prod 310:127434. https://doi.org/10.1016/j.jclepro.2021.127434

    Article  CAS  Google Scholar 

  21. Ji Z, Yang X, Qi X, Zhang H, Zhang Y, Xia X, Pei Y (2022) Facile synthesis of waste-based CdS-loaded hierarchically porous geopolymer for adsorption-photocatalysis of organic contamination and its environmental risks. Chem 308:136144. https://doi.org/10.1016/j.chemosphere.2022.136144

    Article  CAS  Google Scholar 

  22. Rojas S, Horcajada P (2020) Metal-organic frameworks for the removal of emerging organic contaminants in water. Chem Ver 120:8378–8415. https://doi.org/10.1021/acs.chemrev.9b00797

    Article  CAS  Google Scholar 

  23. Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, Van Der Ploeg M, Van De Zeea S, Ritsema C (2015) Emerging pollutants in the environment: a challenge for water resource management. Inter Soil Water Cons Res 3:57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  24. The World Bank Group (2023) The World Bank. Washington. https://www.worldbank.org/en/topic/agriculture/overview. Accessed 19 Aug 2023

  25. Chaudhry FN, Malik MF (2017) Factors affecting water pollution: a review. J Ecosyst Ecogr 07:225. https://doi.org/10.4172/2157-7625.1000225

    Article  Google Scholar 

  26. Ellis JB (2006) Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ Pollut 144:184–189. https://doi.org/10.1016/j.envpol.2005.12.018

    Article  CAS  PubMed  Google Scholar 

  27. Dey S, Bano F, Malik A (2019). In: Narasimha M, Prasad V, Vithanage M, Kapley A (eds) Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  28. Singh AK, Chandra R (2019) Pollutants released from the pulp paper industry: aquatic toxicity and their health hazards. Aquat Toxicol 211:202–216. https://doi.org/10.1016/j.aquatox.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Saini RD (2017) Textile organic dyes: polluting effects and elimination methods from textile waste water. Int J Chem Eng Res 9:121–136

    Google Scholar 

  30. Souza FG, Ferreira AC, Varela A, Oliveira GE, Machado F, Pereira ED, Fernandes E, Pinto JC, Nele M (2013) Methodology for determination of magnetic force of polymeric nanocomposites. Polym Test 32:1466–1471. https://doi.org/10.1016/j.polymertesting.2013.09.018

    Article  CAS  Google Scholar 

  31. Rossatto DL, Netto MS, Jahn SL, Mallmann ES, Dotto GL, Foletto EL (2020) Highly efficient adsorption performance of a novel magnetic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/10.1016/j.jece.2020.103804

    Article  CAS  Google Scholar 

  32. da Maranhão FS, Gomes F, Thode S, Das DB, Pereira E, Lima N, Carvalho F, Aboelkheir M, Costa V, Pal K (2021) Oil spill sorber based on extrinsically magnetizable porous geopolymer. Mater 14:1–11. https://doi.org/10.3390/ma14195641

    Article  CAS  Google Scholar 

  33. Gholinejad M, Karimi B, Mansouri F (2014) Synthesis and characterization of magnetic copper ferrite nanoparticles and their catalytic performance in one-pot odorless carbon-sulfur bond formation reactions. J Mol Catal A 386:20–27. https://doi.org/10.1016/j.molcata.2014.02.006

    Article  CAS  Google Scholar 

  34. Subha A, Shalini MG, Sahu BN, Rout S, Sahoo SC (2022) Role of surface defects and anisotropy variation on magnetic properties of copper ferrite nanoparticles prepared by co-precipitation method. Mater Chem Phys 286:126212. https://doi.org/10.1016/j.matchemphys.2022.126212

    Article  CAS  Google Scholar 

  35. Moro D, Fabbri R, Romano J, Ulian G, Calafato A, Solouki A, Sangiorgi C, Valdrè G (2015) Thermal, X-ray diffraction and oedometric analyses of silt-waste/NaOH-activated metakaolin geopolymer composite. J Compos Sci 5:269. https://doi.org/10.3390/jcs5100269

    Article  CAS  Google Scholar 

  36. Farokhi G, Saidi M (2022) Catalytic activity of bimetallic spinel magnetic catalysts (NiZnFe2O4, CoZnFe2O4 and CuZnFe2O4) in biodiesel production process from neem oil: process evaluation and optimization. Chem Eng Process 181:109170. https://doi.org/10.1016/j.cep.2022.109170

    Article  CAS  Google Scholar 

  37. Vosoughifar M (2016) Preparation and application of copper ferrite nanoparticles for degradation of methyl orange. J Mater Sci Mater Electron 27:10449–10453. https://doi.org/10.1007/s10854-016-5133-x

    Article  CAS  Google Scholar 

  38. Al-husseiny RA, Ebrahim SE (2022) Synthesis of nano-magnetite and magnetite/synthetic geopolymer nano-porous composite for application as a novel adsorbent. Environ Nanotechnol Monit Manag 18:100700. https://doi.org/10.1016/j.enmm.2022.100700

    Article  CAS  Google Scholar 

  39. Kharazi P, Rahimi R, Rabbani M (2019) Copper ferrite-polyaniline nanocomposite: structural, thermal, magnetic and dye adsorption properties. Solid State Sci 93:95–100. https://doi.org/10.1016/j.solidstatesciences.2019.05.007

    Article  CAS  Google Scholar 

  40. Morel M, Martínez F, Mosquera E (2013) Synthesis and characterization of magnetite nanoparticles from mineral magnetite. J Magn Magn Mater 343:76–81. https://doi.org/10.1016/j.jmmm.2013.04.075

    Article  CAS  Google Scholar 

  41. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 14:1180–1185. https://doi.org/10.1107/S0365110X61003429

    Article  CAS  Google Scholar 

  42. Ngnintedem D, Lampe M, Tchakouté H, Rüscher C (2022) Effects of iron minerals on the compressive strengths and microstructural properties of metakaolin-based geopolymer materials. Gels 8:525. https://doi.org/10.3390/gels8080525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srinivasan K, Sivakumar A (2013) Geopolymer binders: a need for future concrete construction. ISRN Pol Sci 2013:1–8. https://doi.org/10.1155/2013/509185

    Article  CAS  Google Scholar 

  44. Rasaki SA, Bingxue Z, Guarecuco R, Thomas T, Minghui Y (2019) Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J Clean Prod 213:42–58. https://doi.org/10.1016/j.jclepro.2018.12.145

    Article  CAS  Google Scholar 

  45. Din MI, Khalid R, Najeeb J, Hussain Z (2021) Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies—a critical review. J Clean Prod 298:126567. https://doi.org/10.1016/j.jclepro.2021.126567

    Article  CAS  Google Scholar 

  46. Kumar K, Chitkara M, Sandhu IS, Mehta D, Kumar S (2014) Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J Alloys Compd 588:681–689. https://doi.org/10.1016/j.jallcom.2013.11.127

    Article  CAS  Google Scholar 

  47. Zhang Y, Liu L (2013) Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater. Particuology 11:353–358. https://doi.org/10.1016/j.partic.2012.10.007

    Article  CAS  Google Scholar 

  48. Kaya-Özkiper K, Uzun A, Soyer-Uzun S (2021) Red mud- and metakaolin-based geopolymers for adsorption and photocatalytic degradation of methylene blue: towards self-cleaning construction materials. J Clean Prod 288:125120. https://doi.org/10.1016/j.jclepro.2020.125120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Macromolecules Institute Professor Eloisa Mano (IMA) for all the support. We also thank the Center of Mineralogy (CETEM), for the SEM analyses, conducted by Antonieta Middea, the Marine Research Institute (IPqM) by the synthesis of magnetic nanoparticles conducted by Roberto Costa Lima. Besides, this work was supported by Agência Nacional de Petróleo (PRH 16.1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq BRICS-STI-5 440090/2022-9 and PQ-2022 302508/2022-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES–Finance Code 001), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ E-26/210.800/2021 (Energy), E-26/211.122/2021 (COVID), E-26/210.511/2021 (ConBraPA2022), E-26/201.154/2021 (CNE), and E-26/210.080/2023 (Thematic)).

Funding

The study was supported by the Agência Nacional de Petróleo (PRH 16.1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq BRICS-STI-5 440090/2022-9 and PQ-2022 302508/2022-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ E-26/210.800/2021 (Energy), E-26/211.122/2021 (COVID), E-26/210.511/2021 (ConBraPA2022), E-26/201.154/2021 (CNE), and E-26/210.080/2023 (Thematic)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabíola da Silveira Maranhão or Fernando Gomes de Souza Jr..

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, G.B., da Silveira Maranhão, F., de Souza, F.G. et al. Nanomodified Geopolymers with Copper Ferrites for Methylene Blue Degradation. Top Catal 67, 670–687 (2024). https://doi.org/10.1007/s11244-024-01922-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-024-01922-y

Keywords

Navigation