Skip to main content
Log in

Efficient Activation of Peroxymonosulfate to Produce Singlet Oxygen (1O2) for Degradation of Tetracycline over Cu-Co Nanocomposite Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The application of Co3O4 in activated PMS degradation of organic pollutants has been widely concerned. Due to the limited catalytic performance of pure cobalt catalyst, a novel Cu-Co nanocomposite catalyst was synthesized in this paper for activating PMS to degrade tetracycline (TC). After a small amount of copper was introduced, Cu-Co nanocomposite displayed significant heterogeneous catalytic activity in the activation of PMS. Efficient and rapid degradation of TC was achieved under various pH conditions in the Cu-Co nanocomposite/PMS catalytic system. The generation of a large number of singlet oxygen (1O2) is the dominant factor in TC degradation. This study improved the practicality of the PMS activation system across various environmental conditions. Cu-Co nanocomposites exhibit exceptional catalytic properties, rendering them promising catalysts for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors will supply the relevant data in response to reasonable requests.

References

  1. Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. https://doi.org/10.1007/s10311-013-0404-8

    Article  CAS  Google Scholar 

  2. Önal A (2011) Overview on liquid chromatographic analysis of tetracycline residues in food matrices. Food Chem 127:197–203. https://doi.org/10.1016/j.foodchem.2011.01.002

    Article  CAS  Google Scholar 

  3. Mao S, Yao G, Liu P, Liu C, Wu Y, Ding Z, Ding C, Xia M, Wang F (2023) Construction of an enhanced built-in electric field in S-doped g-C3N4/NiCo2O4 for boosting peroxymonosulfate activation. Chem Eng J 470:144250. https://doi.org/10.1016/j.cej.2023.144250

    Article  CAS  Google Scholar 

  4. Liu X, Zhang G, Liu Y, Lu S, Qin P, Guo X, Bi B, Wang L, Xi B, Wu F, Wang W, Zhang T (2019) Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ Pollut 246:163–173. https://doi.org/10.1016/j.envpol.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Liu B, Zhang X, Wang J, Gao S (2016) The distribution of veterinary antibiotics in the river system in a livestock-producing region and interactions between different phases. Environ Sci Pollut Res 23:16542–16551. https://doi.org/10.1007/s11356-016-6677-2

    Article  CAS  Google Scholar 

  6. Hedberg N, Stenson I, Nitz Pettersson M, WarshanaD N-K, Tedengrena M, Kautsky N (2018) Antibiotic use in Vietnamese fish and lobster sea cage farms; implications for coral reefs and human health. Aquaculture 495:366–375. https://doi.org/10.1016/j.aquaculture.2018.06.005

    Article  CAS  Google Scholar 

  7. Ji L, Chen W, Duan L, Zhu D (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environmental Science Technology 43:2322–2327. https://doi.org/10.1021/es803268b

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Liu Z, Yang X, He P, Shi C, Feng Q, Xiao L (2023) A novel strategy of high oxygen vacancy concentration regulation for promoting the formation of nonradical species in the directional activation of peroxymonosulfate. Chem Eng J 468:143839. https://doi.org/10.1016/j.cej.2023.143839

    Article  CAS  Google Scholar 

  9. Lee J, Von Gunten U, Kim J-H (2020) Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol 54:3064–3081. https://doi.org/10.1021/acs.est.9b07082

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, An H, Feng J, Ren Y, Ma J (2019) Impact of crystal types of AgFeO 2 nanoparticles on the peroxymonosulfate activation in the water. Environ Sci Technol 53:4500–4510. https://doi.org/10.1021/acs.est.9b00658

    Article  CAS  PubMed  Google Scholar 

  11. Chen D, Bai Q, Ma T, Jing X, Tian Y, Zhao R, Zhu G (2022) Stable metal–organic framework fixing within zeolite beads for effectively static and continuous flow degradation of tetracycline by peroxymonosulfate activation. Chem Eng J 435:134916. https://doi.org/10.1016/j.cej.2022.134916

    Article  CAS  Google Scholar 

  12. Wang Y, Cao D, Zhao X (2017) Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon. Chem Eng J 328:1112–1121. https://doi.org/10.1016/j.cej.2017.07.042

    Article  CAS  Google Scholar 

  13. Guan Y, Ma J, Ren Y, Liu Y, Xiao J, Lin L, Zhang C (2013) Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res 47:5431–5438. https://doi.org/10.1016/j.watres.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  14. Tian X, Gao P, Nie Y, Yang C, Zhou Z, Li Y (2017) A novel singlet oxygen involved peroxymonosulfate activation mechanism for degradation of ofloxacin and phenol in water. Chem Commun 53:6589–6592. https://doi.org/10.1039/C7CC02820B

    Article  CAS  Google Scholar 

  15. Liu H, Deng S, Li W, Shan Z, Wei Q, Li Y (2023) Carbon-doped Co3O4-MgO catalyzed peroxymonosulfate activation via an enhanced Co(III)/Co(II) cycle for rapid chloramphenicol degradation. Chem Eng J 461:142115. https://doi.org/10.1016/j.cej.2023.142115

    Article  CAS  Google Scholar 

  16. Ji Y, Dong C, Kong D, Lu J, Zhou Q (2015) Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides. Chem Eng J 263:45–54. https://doi.org/10.1016/j.cej.2014.10.097

    Article  CAS  Google Scholar 

  17. Kakavandi B, Bahari N, Rezaei Kalantary R, Dehghani Fard E (2019) Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: a new hybrid system. Ultrason Sonochem 55:75–85. https://doi.org/10.1016/j.ultsonch.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Liu X, Jing J, Mu J, Wang R, Du C, Su Y (2023) Photoelectrocatalytic peroxymonosulfate activation over CoFe2O4-BiVO4 photoanode for environmental purification: unveiling of multi-active sites, interfacial engineering and degradation pathways. J Colloid Interface Sci 644:519–532. https://doi.org/10.1016/j.jcis.2023.03.202

    Article  CAS  PubMed  Google Scholar 

  19. Hu P, Long M (2016) Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B 181:103–117. https://doi.org/10.1016/j.apcatb.2015.07.024

    Article  CAS  Google Scholar 

  20. Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712. https://doi.org/10.1021/es035121o

    Article  CAS  PubMed  Google Scholar 

  21. Anipsitakis GP, Stathatos E, Dionysiou DD (2005) Heterogeneous activation of oxone using Co 3 O 4. J Phys Chem B 109:13052–13055. https://doi.org/10.1021/jp052166y

    Article  CAS  PubMed  Google Scholar 

  22. Fierro G, Jacono ML, Inversi M, Dragone R, Porta P (2000) TPR and XPS study of cobalt–copper mixed oxide catalysts: evidence of a strong Co–Cu interaction. Top Catal 10:39–48. https://doi.org/10.1023/A:1019151731177

    Article  CAS  Google Scholar 

  23. Yao J, Zeng X, Wang Z (2017) Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: kinetic study and products identification. Chem Eng J 330:345–354. https://doi.org/10.1016/j.cej.2017.07.155

    Article  CAS  Google Scholar 

  24. Chen C, Liu L, Li Y, Li W, Zhou L, Lan Y, Li Y (2020) Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate. Chem Eng J 384:123257. https://doi.org/10.1016/j.cej.2019.123257

    Article  CAS  Google Scholar 

  25. Song L, Yang J, Zhang S (2017) Enhanced photocatalytic activity of Ag 3 PO 4 photocatalyst via glucose-based carbonsphere modification. Chem Eng J 309:222–229. https://doi.org/10.1016/j.cej.2016.10.035

    Article  CAS  Google Scholar 

  26. Wei R, Ge F, Chen M, Wang R (2012) Occurrence of ciprofloxacin, enrofloxacin, and florfenicol in animal wastewater and water resources. J Environ Qual 41:1481–1486. https://doi.org/10.2134/jeq2012.0014

    Article  CAS  PubMed  Google Scholar 

  27. Shi P, Su R, Zhu S, Zhu M, Li D, Xu S (2012) Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water. J Hazard Mater 229–230:331–339. https://doi.org/10.1016/j.jhazmat.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  28. Baia L, Stefan R, Kiefer W, Popp J, Simon S (2002) Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J Non-Cryst Solids 303:379–386. https://doi.org/10.1016/S0022-3093(02)01042-6

    Article  CAS  Google Scholar 

  29. Lou Y, Wang L, Zhao Z, Zhang Y, Zhang Z (2014) Low-temperature CO oxidation over Co3O4-based catalysts: significant promoting effect of Bi2O3 on Co3O4 catalyst. Appl Catal B 146:43–49. https://doi.org/10.1016/j.apcatb.2013.06.007

    Article  CAS  Google Scholar 

  30. Su J, Zhang Z, Fu D, Liu D, Xu X (2016) Higher alcohols synthesis from syngas over CoCu/SiO2 catalysts: dynamic structure and the role of Cu. J Catal 336:94–106. https://doi.org/10.1016/j.jcat.2016.01.015

    Article  CAS  Google Scholar 

  31. Guo X, Hu B, Wang K, Wang H, Li B (2022) Cu embedded Co oxides and its fenton-like activity for metronidazole degradation over a wide pH range: active sites of Cu doped Co3O4 with 1 1 2 exposed facet. Chem Eng J 435:132910. https://doi.org/10.1016/j.cej.2021.132910

    Article  CAS  Google Scholar 

  32. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L (2016) Plasma-engraved Co 3 O 4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angewandte Chemie-International Edition 55:5277–5281. https://doi.org/10.1002/anie.201600687

    Article  CAS  PubMed  Google Scholar 

  33. Dai Q, Yu G, Qi J, Wang Y, Xing L, Wang Y, Zhang Z, Zhong X, Fang Z, Du P, Lyu L, Wang L (2024) Ternary Co…Ov…Cu sites trigger Co-utilization of endogenous electron donor-acceptor for sustainable removal of refractory low-carbon fatty amines in Fenton-like system. Appl Catal B 340:123184. https://doi.org/10.1016/j.apcatb.2023.123184

    Article  CAS  Google Scholar 

  34. Wang L (2024) Ternary Co…Ov…Cu sites trigger Co-utilization of endogenous electron donor-acceptor for sustainable removal of refractory low-carbon fatty amines in Fenton-like system. Appl Catal B 340:123184. https://doi.org/10.1016/j.apcatb.2023.123184

    Article  CAS  Google Scholar 

  35. Xue X, Liao W, Liu D, Zhang X, Huang Y (2023) MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: role of surface hydroxyl and oxygen vacancies. Sep Purif Technol 306:122560. https://doi.org/10.1016/j.seppur.2022.122560

    Article  CAS  Google Scholar 

  36. Yang Y, Ji W, Li X, Lin H, Chen H (2022) Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0. J Hazard Mater 424:127640. https://doi.org/10.1016/j.jhazmat.2021.127640

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Zhou J, Liu D, Liu X, Sun Y, Xiao S (2023) Performance and mechanism of co-doped Ce–Mn perovskite for degradation of tetracycline via heterogeneous photocatalysis coupled PMS oxidation. Mater Sci Semicond Process 154:107229. https://doi.org/10.1016/j.mssp.2022.107229

    Article  CAS  Google Scholar 

  38. Xu Y, Ai J, Zhang H (2016) The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process. J Hazard Mater 309:87–96. https://doi.org/10.1016/j.jhazmat.2016.01.023

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Liu D, Zhao Y, Li S, Wei X, Meng F, Huang W, Lei Z (2019) Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: performance and mechanism. Chemosphere 233:549–558. https://doi.org/10.1016/j.chemosphere.2019.05.291

    Article  CAS  PubMed  Google Scholar 

  40. Ji F, Li C, Deng L (2011) Performance of CuO/Oxone system: heterogeneous catalytic oxidation of phenol at ambient conditions. Chem Eng J 178:239–243. https://doi.org/10.1016/j.cej.2011.10.059

    Article  CAS  Google Scholar 

  41. Zhou Y, Jiang J, Gao Y, Ma J, Pang S, Li J, Li X, Yuan L (2015) Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process. Environ Sci Technol 49:12941–12950. https://doi.org/10.1021/acs.est.5b03595

    Article  CAS  PubMed  Google Scholar 

  42. Zhang M, Wang C, Liu C, Luo R, Li J, Sun X, Shen J, Han W, Wang L (2018) Metal–organic framework derived Co 3 O 4 /C@SiO 2 yolk–shell nanoreactors with enhanced catalytic performance. J Mater Chem A 6:11226–11235. https://doi.org/10.1039/C8TA03565B

    Article  CAS  Google Scholar 

  43. Zhu Z, Yu X, Qu J, Jing Y, Abdelkrim Y, Yu Z (2020) Preforming abundant surface cobalt hydroxyl groups on low crystalline flowerlike Co3(Si2O5)2(OH)2 for enhancing catalytic degradation performances with a critical nonradical reaction. Appl Catal B 261:118238. https://doi.org/10.1016/j.apcatb.2019.118238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 22306094, 22102070) and Jiangsu Province Scientific Supporting Project (BK20220363, BK 20210174) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yarong Fang or Guangze Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Fang, Y., Wang, W. et al. Efficient Activation of Peroxymonosulfate to Produce Singlet Oxygen (1O2) for Degradation of Tetracycline over Cu-Co Nanocomposite Catalyst. Top Catal (2024). https://doi.org/10.1007/s11244-024-01921-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01921-z

Keywords

Navigation