Skip to main content
Log in

A Detailed Investigation and Catalytic Application of Gold Nanoparticles Towards Synthesis of N & O-Heterocycles

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nanotechnology advancements, notably in catalysis, have found several uses in the fabrication of heterocyclic molecules. An abundance nanoparticle (NPs) has been successfully used in a variety of organic transformations, which prompted us to undertake concentrated efforts to cover all instances in which gold nanoparticles (Au NPs) have been used in organic transformations. The catalytic application of gold nanoparticles in organic transformation has gained considerable interest researchers owing to its physical and chemical properties. Gold nanoparticles as catalysts in organic reactions deliver robust, green, and cost-effective alternatives for the synthetic transformations of heterocyclic scaffolds. Nitrogen- and oxygen-containing heterocyclic atoms are the essential prime units existing in diverse carbon-based vibrant lives and are substantial for industrial, pharmaceutical, and agrochemicals. Our focus will be on Au NP-catalyzed reactions in synthetic transformations for the production of heterocyclic scaffolds containing nitrogen and oxygen heteroatoms documented from 2011 to 2022. From a synthetic standpoint, this review will offer the reader an intrinsic framework for selecting the optimal Au NP catalytic system of importance for the synthesis of the preferred heterocyclic scaffold.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346

    Article  CAS  PubMed  Google Scholar 

  2. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327

    Article  CAS  PubMed  Google Scholar 

  3. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) An overview of N-heterocyclic carbenes. Nature 510:485

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Watanabe K, Menzel D, Nilius N, Freund HJ (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301

    Article  CAS  PubMed  Google Scholar 

  5. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688

    Article  CAS  PubMed  Google Scholar 

  6. Grzelczak M, Liz-Marzan LM (2020) The relevance of light in the formation of colloidal metal nanoparticles. Colloidal Synth Plas Nanomet 1:515

    Article  Google Scholar 

  7. He L, Weniger F, Neumann H, Beller M (2016) Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew Chem Int Ed 55:12582

    Article  CAS  Google Scholar 

  8. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852

    Article  CAS  Google Scholar 

  9. Pla D, Gomez M (2016) Metal and metal oxide nanoparticles: a lever for C-H functionalization. ACS Catal 6:3537

    Article  CAS  Google Scholar 

  10. Saha D, Mukhopadhyay C (2019) Metal nanoparticles: an efficient tool for heterocycles synthesis and their functionalization via CH activation. Current Organocatalysis 6:79

    Article  CAS  Google Scholar 

  11. Yasukawa T, Miyamura H, Kobayashi S (2016) Chiral ligand-modified metal nanoparticles as unique catalysts for asymmetric C–C bond-forming reactions: how are active species generated? ACS Catal 6:7979

    Article  CAS  Google Scholar 

  12. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner AP, Patra HK (2019) A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun 55:6964

    Article  CAS  Google Scholar 

  13. Wang Q, Astruc D (2019) State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 120:1438

    Article  PubMed  Google Scholar 

  14. Elwahy AH, Shaaban MR (2015) Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials. RSC Adv 5:75659

    Article  ADS  CAS  Google Scholar 

  15. Favier I, Pla D, Gómez M (2019) Palladium nanoparticles in polyols: Synthesis, catalytic couplings, and hydrogenations. Chem Rev 120:1146

    Article  PubMed  Google Scholar 

  16. Dandia A, Parewa V, Sharma A (2014). In: Ameta KL, Dandia A (eds) A Green Chemistry: Synthesis of Bioactive Heterocycles, 1st edn. Springer, New Delhi, pp 129–161

    Chapter  Google Scholar 

  17. Rudolph M, Hashmi ASK (2012) Gold catalysis in total synthesis-an update. Chem Soc Rev 41:2448

    Article  CAS  PubMed  Google Scholar 

  18. Brouwer Z, Li C, He C (2008) Gold-catalyzed organic transformations. Chem Rev 108:3239

    Article  PubMed  Google Scholar 

  19. Corma A, Perez AL, Sabater MJ (2011) Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem Rev 111:1657

    Article  CAS  PubMed  Google Scholar 

  20. Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals-characterized intermediates. Angew Chem Int Ed 49:5232

    Article  CAS  Google Scholar 

  21. Yazdani H, Hooshmand SE, Varma RS (2021) Gold nanoparticle-catalyzed multicomponent reactions. ACS Sustain Chem Eng 9:16556

    Article  CAS  Google Scholar 

  22. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. Med Chem 57:10257

    Article  CAS  Google Scholar 

  23. Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT (2019) A survey of the structures of US FDA approved combination drugs. J Med Chem 62:4265

    Article  CAS  PubMed  Google Scholar 

  24. Delost MD, Smith DT, Anderson BJ, Njardarson JT (2018) From oxiranes to oligomers: architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles. J Med Chem 61:10996

    Article  CAS  PubMed  Google Scholar 

  25. Sonawane HR, Deore JV, Chavan PN (2022) Reusable nano catalysed synthesis of heterocycles: an overview. Chem Select 7:e202103900

    CAS  Google Scholar 

  26. Jangir N, Bagaria SK, Jangid DK (2022) Nanocatalysts: applications for the synthesis of N-containing five-membered heterocycles. RSC adv 12:19640

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu JY, Fong WF, Zhang JX, Leung CH, Kwong HL, Yang MS, Li D, Cheung HY (2003) Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from radix peucedani. Eur J Pharmacol 473:9

    Article  CAS  PubMed  Google Scholar 

  28. Ettahiri W, Saber M, Ouzrour Z, Lahmidi S, Salim R, Adardour M, Bouyahya A, Baouid A, Essassi EM, Ramli Y, Taleb M (2023) Recent advances in the development of nitrogencontaining heterocyclic compounds as anticancer agents: a review. Moroccan J Heterocycl Chem 22:22

    Google Scholar 

  29. Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M (2023) Nitrogen containing heterocycles as anticancer agents: a medicinal chemistry perspective. Pharmaceutical 16:299

    CAS  Google Scholar 

  30. Abbas SS, Jasim AM, Shakir TH, Abbas IS (2023) Anticancer activities of some heterocyclic compounds containing an oxygen atom: a review. Al-Rafidain J Med Sci 4:60

    Article  Google Scholar 

  31. Raj T, Bhatia RK, Sharma M, Saxena AK, Ishar MP (2010) Cytotoxic activity of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl) chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides. Eur J Med Chem 45:790

    Article  CAS  PubMed  Google Scholar 

  32. Rueping M, Sugiono E, Merino E (2008) Asymmetric organocatalysis: an efficient enantioselective access to benzopyranes and chromenes. Chem Eur J 14:6329

    Article  CAS  PubMed  Google Scholar 

  33. de Andrade-Neto VF, Goulart MO, da Silva Filho JF, Da Silva MJ, Maria do Carmo FR, Pinto AV, Zalis MG, Carvalho LH, Krettli AU (2004) Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and plasmodium berghei in vivo. Bioorg Med Chem Lett 14:1145

    Article  PubMed  Google Scholar 

  34. Moon DO, Kim KC, Jin CY, Han MH, Park C, Lee KJ, Park YM, Choi YH, Kim GY (2007) Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Int Immunopharmacol 7:222

    Article  CAS  PubMed  Google Scholar 

  35. Morgan LR, Jursic BS, Hooper CL, Neumann DM, Thangaraj K, LeBlanc B (2002) Anticancer activity for 4,4′-dihydroxybenzophenone-2,4-dinitrophenylhydrazone (A-007) analogues and their abilities to interact with lymphoendothelial cell surface markers. Bioorg Med Chem Lett 12:3407

    Article  CAS  PubMed  Google Scholar 

  36. Kumar R, Singh AA, Kumar U, Jain P, Sharma AK, Kant C, Haque Faizi MS (2023) Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal. J Mol Struct 1294:136346

    Article  CAS  Google Scholar 

  37. Islam MB, Islam MI, Nath N, Emran TB, Rahman MR, Sharma R, Matin MM (2023) Recent advances in pyridine scaffold: focus on chemistry, synthesis, and antibacterial activities. Biomed Res Int 18:2023

    Google Scholar 

  38. Wang H, Zhao Y, Xu H, Wang P, Chen S (2023) Structural modification may be a way to make isoquinoline alkaloids efficient antibacterial drugs. Arab J Chem 20:105204

    Article  Google Scholar 

  39. Negi M, Singh S, Kumar G, Afaque N, Negi M (2023) A review synthesis and evaluation of novel benzofuran derivatives as potent anticancer and anti-bacterial activity. Bio Gecko 12:6477

    Google Scholar 

  40. Kumar A, Maurya RA, Sharma S, Ahmad P, Singh AB, Bhatia G, Srivastava AK (2009) Pyranocoumarins: a new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg Med Chem Lett 19:6447–6451

    Article  CAS  PubMed  Google Scholar 

  41. Foye WO (1991) Principi di Chemico Farmaceutica, Piccin. Padora, Italy

  42. Andrade MM, Protti IF, Maltarollo VG, da Costa YF, de Moraes WG, Moreira NF, Garcia GG, Caran GF, Ottoni FM, Alves RJ, Moreira CP (2021) Synthesis of arylfuran derivatives as potential antibacterial agents. Med Chem Res 30:1074

    Article  CAS  Google Scholar 

  43. Kiyani H, Ghorbani F (2014) Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media. Chem Pap 68:1104

    Article  CAS  Google Scholar 

  44. Li MM, Chen X, Deng Y, Lu J (2021) Recent advances of N-heterocyclic carbenes in the applications of constructing carbo-and heterocyclic frameworks with potential biological activity. RSC adv 11:38060

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jangir N, Poonam DS, Jangid DK (2022) Recent advances in the synthesis of five-and six-membered heterocycles as bioactive skeleton: a concise overview. ChemistrySelect 7:e202103139

    Article  CAS  Google Scholar 

  46. Bagley MC, Hughes DD, Sabo HM, Taylor PH, Xiong X (2003) One-pot synthesis of pyridines or pyrimidines by tandem oxidation-heteroannulation of propargylic alcohols. Synlett 10:1443

    Article  Google Scholar 

  47. McReynolds MD, Dougherty JM, Hanson PR (2004) Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. Chem Rev 104:2239

    Article  CAS  PubMed  Google Scholar 

  48. Alonso F, Beletskaya IP, Yus M (2004) Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem Rev 104:3079

    Article  CAS  PubMed  Google Scholar 

  49. Deiters A, Martin SF (2004) Synthesis of oxygen-and nitrogen-containing heterocycles by ring-closing metathesis. Chem Rev 104:2199

    Article  CAS  PubMed  Google Scholar 

  50. Patil NT, Yamamoto Y (2008) Coinage metal-assisted synthesis of heterocycles. Chem Rev 108:3395

    Article  CAS  PubMed  Google Scholar 

  51. Yet L (2000) Metal-mediated synthesis of medium-sized rings. Chem Rev 100:2963

    Article  CAS  PubMed  Google Scholar 

  52. Roughley SD, Jordan AM (2011) The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. Journal of medicinal chemistry 54:3451

    Article  CAS  PubMed  Google Scholar 

  53. So MH, Liu Y, Ho CM, Lam KY, Che CM (2011) Silica-supported gold nanoparticles catalyzed one-pot, tandem aerobic oxidative cyclization reaction for nitrogen-containing polyheterocyclic compounds. Chem Cat Chem 3:386

    CAS  Google Scholar 

  54. Climent MJ, Corma A, Hernández JC, Hungría AB, Iborra S, Martínez-Silvestre S (2012) Biomass into chemicals: one-pot two-and three-step synthesis of quinoxalines from biomass-derived glycols and 1, 2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. J Catal 292:118

    Article  CAS  Google Scholar 

  55. Didó CA, Mass EB, Pereira MB, Hinrichs R, D’Oca MG, Costa TM, Russowsky D, Benvenutti EV (2020) Heterogeneous gold nanocatalyst applied in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones. Colloids Surf A: Physicochem Eng 589:124455

    Article  Google Scholar 

  56. Schröder F, Ojeda M, Erdmann N, Jacobs J, Luque R, Noël T, Van Meervelt L, Van der Eycken J, Van der Eycken EV (2013) Supported gold nanoparticles as efficient and reusable heterogeneous catalyst for cycloisomerization reactions. Green Chem 17:3314

    Article  Google Scholar 

  57. Boominathan M, Pugazhenthiran N, Nagaraj M, Muthusubramanian S, Murugesan S, Bhuvanesh N (2013) Nanoporous titania-supported gold nanoparticle-catalyzed green synthesis of 1,2,3-triazoles in aqueous medium. ACS Sustain Chem Eng 1:1405

    Article  CAS  Google Scholar 

  58. Perea-Buceta JE, Wirtanen T, Laukkanen OV, Mäkelä MK, Nieger M, Melchionna M, Huittinen N, Lopez-Sanchez JA, Helaja J (2013) Cycloisomerization of 2-alkynylanilines to indoles catalyzed by carbon-supported gold nanoparticles and subsequent homocoupling to 3, 3′-biindoles. Angew Chem 125:12051

    Article  ADS  Google Scholar 

  59. Climent MJ, Corma A, Iborra S, Martínez-Silvestre S (2013) Gold catalysis opens up a new route for the synthesis of benzimidazoylquinoxaline derivatives from biomass-derived products (glycerol). Chem Cat Chem 5:3866

    CAS  Google Scholar 

  60. Schröder F, Erdmann N, Noël T, Luque R, Van der Eycken EV (2015) Leaching-free supported gold nanoparticles catalyzing cycloisomerizations under microflow conditions. Adv Synth Catal 357:3141

    Article  Google Scholar 

  61. Liang S, Hammond L, Xu B, Hammond GB (2016) Commercial supported gold nanoparticles catalyzed alkyne hydroamination and indole synthesis. Adv Synth Catal 358:3313

    Article  CAS  Google Scholar 

  62. Savva I, Kalogirou AS, Achilleos M, Vasile E, Koutentis PA, Krasia-Christoforou T (2016) Evaluation of PVP/Au nanocomposite fibers as heterogeneous catalysts in indole synthesis. Molecules 21:1218

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tzani MA, Gabriel C, Lykakis IN (2020) Selective synthesis of benzimidazoles from o-phenylenediamine and aldehydes promoted by supported gold nanoparticles. Nanomaterials 10:2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sinha D, Biswas S, Das M, Ghatak A (2021) An eco-friendly, one pot synthesis of tri-substituted imidazoles in aqueous medium catalyzed by RGO supported Au nano-catalyst and computational studies. J Mol Struct 1242:130823

    Article  CAS  Google Scholar 

  65. Sepahvand M, Buazar F, Sayahi MH (2020) Novel marine-based gold nanocatalyst in solvent-free synthesis of polyhydroquinoline derivatives: Green and sustainable protocol. Appl Organomet Chem 34:e6000

    Article  CAS  Google Scholar 

  66. Tang L, Guo X, Yang Y, Zha Z, Wang Z (2014) Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chem Comm 50:6145

    Article  CAS  PubMed  Google Scholar 

  67. Vlachou EE, Armatas GS, Litinas KE (2017) Synthesis of fused oxazolocoumarins from o-hydroxynitrocoumarins and benzyl alcohol under gold nanoparticles or FeCl3 catalysis. J Heterocycl Chem 54:2447

    Article  CAS  Google Scholar 

  68. Yazdani H, Pardis S, LoniBazgir M (2020) A gold nanoparticle as a Lewis acid catalyst in 1,3-dipolar cycloaddition reaction. Catal Comm 134:105844

    Article  CAS  Google Scholar 

  69. Ferouani G, Ameur N, Bachir R (2020) Preparation and characterization of supported bimetallic gold-iron nanoparticles, and its potential for heterogeneous catalysis. Res Chem Int 46:1373

    Article  CAS  Google Scholar 

  70. Naeimi H, Farahnak Zarabi M (2018) Gold nanoparticles supported on thiol-functionalized reduced graphene oxide as effective recyclable catalyst for synthesis of tetrahydro-4H-chromenes in aqueous media. App Organomet Chem 32:e4225

    Article  Google Scholar 

  71. Saridakis I, Kidonakis M, Stratakis M (2018) Unique reactivity of dihydrosilanes under catalysis by supported gold nanoparticles: cis-1, 2-dehydrogenative disilylation of alkynes. Chem Cat Chem 10:980

    CAS  Google Scholar 

  72. Ye R, Zhukhovitskiy AV, Kazantsev RV, Fakra SC, Wickemeyer BB, Toste FD, Somorjai GA (2018) Supported Au nanoparticles with N-heterocyclic carbene ligands as active and stable heterogeneous catalysts for lactonization. J Am Chem Soc 140:4144

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhendu Chakroborty or Jitendra Malviya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakroborty, S., Malviya, J., Mishra, D.R. et al. A Detailed Investigation and Catalytic Application of Gold Nanoparticles Towards Synthesis of N & O-Heterocycles. Top Catal 67, 123–139 (2024). https://doi.org/10.1007/s11244-023-01884-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01884-7

Keywords

Navigation