Skip to main content
Log in

Advances in Metal-Catalyzed Denitrogenative Pathways for N-Heterocycle Synthesis

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 01 December 2023

This article has been updated

Abstract

For more than a century, cutting-edge research in organic chemistry has been the discovery of novel, powerful synthetic procedures to create very significant N-heterocyclic scaffolds. Nitrogen-containing heterocyclic scaffolds owing to their extensive abundance in natural products and bioactive compounds has gathered a growing attention in both academical and industrial sectors in pursuit of development of highly efficient clinical targets and drug candidates. Given the significance of nitrogen-rich compounds in contemporary science, significant efforts have been conducted over the past few decades investigating effective techniques for synthesis of N-heterocycles. Due to its intrinsic flexibility and extensive range of applications, catalytic denitrogenative reaction employing transition metal has differentiated itself as a cornerstone among numerous initiatives. In the present article we have outlined the most recent breakthroughs in metal-catalyzed denitrogenative reactions, for proactive synthesis N-heterocycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17

Similar content being viewed by others

Change history

References

  1. Kaur N (2015) Microwave-assisted synthesis: fused five-membered N-heterocycles. Synth Commun 45:789

    Article  CAS  Google Scholar 

  2. Kaur N (2015) Environmentally benign synthesis of five-membered 1, 3-N, N-heterocycles by microwave irradiation. Synth Commun 45:909

    Article  CAS  Google Scholar 

  3. Patil NT, Yamamoto Y (2008) Coinage metal-assisted synthesis of heterocycles. Chem Rev 108:3395

    Article  CAS  PubMed  Google Scholar 

  4. O’Hagan D (2000) Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat Prod Rep 17:435

    Article  PubMed  Google Scholar 

  5. Barbero M, Artuso E, Prandi C (2018) Fungal anticancer metabolites: synthesis towards drug discovery. Curr Med Chem 25:141

    Article  CAS  PubMed  Google Scholar 

  6. Ye S, Molloy B, Braña AF, Zabala D, Olano C, Cortés J, Morís F, Salas JA, Méndez C (2017) Identification by genome mining of a type I polyketide gene cluster from Streptomyces argillaceus involved in the biosynthesis of pyridine and piperidine alkaloids argimycins P. Front Microb 8:194

    Article  Google Scholar 

  7. Ouyang Y, Koike K, Ohmoto T (1994) Canthin-6-one alkaloids from Bruceamollis var. Tonkinensis. Phytochem 36:1543

    Article  CAS  Google Scholar 

  8. Somei M, Yamada F (2005) Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 22:73

    Article  CAS  PubMed  Google Scholar 

  9. Kochanowska-Karamyan AJ, Hamann MT (2010) Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem Rev 110:4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stempel E, Gaich T (2016) Cyclohepta [b] indoles: a privileged structure motif in natural products and drug design. Acc Chem Res 49:2390

    Article  CAS  PubMed  Google Scholar 

  11. Bharati KA, Singh H (2012) BruceamollisWall. Ex Kurz.: untapped potential medicinal plant of Northeast India. NeBIO 3:26

    Google Scholar 

  12. Yurttaş L, Özkay Y, Kaplancıklı ZA, Tunalı Y, Karaca H (2013) Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole–pyrrole derivatives. J Enz Inhib Med Chem 28:830

    Article  Google Scholar 

  13. Pérez-Pérez MJ, Priego EM, Bueno O, Martins MS, Canela MD, Liekens S (2016) Blocking blood flow to solid tumors by destabilizing tubulin: an approach to targeting tumor growth. J Med Chem 59:8685

    Article  PubMed  Google Scholar 

  14. Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 139:22

    Article  CAS  PubMed  Google Scholar 

  15. Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1, 2, 3-triazoles as pharmacophores. Chem Asian J 6:2696

    Article  CAS  PubMed  Google Scholar 

  16. Kantheti S, Narayan R, Raju KV (2015) The impact of 1, 2, 3-triazoles in the design of functional coatings. RSC Adv 5:3687

    Article  ADS  CAS  Google Scholar 

  17. Wojaczynska E, Wojaczynski J, Rahman AU (2018) Synthesis and Applications of 1, 2, 3-Triazoles. Adv Org Synth 11:156

    Article  Google Scholar 

  18. Zhang Z, Yadagiri D, Gevorgyan V (2019) Light-induced metal-free transformations of unactivated pyridotriazoles. Chem Sci 10:8399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davies HM, Alford JS (2014) Reactions of metallocarbenes derived from N-sulfonyl-1, 2, 3-triazoles. Chem Soc Rev 43:5151

    Article  CAS  PubMed  Google Scholar 

  20. Bakulev V, Dehaen W, Beryozkina T (2015) Thermal rearrangements and transformations of 1,2,3-triazoles. Chem. 1 2 3-Triazoles 40:1

    CAS  Google Scholar 

  21. Qian YL, Xia PJ, Li J, Zhao QL, Xiao JA, Xiang HY, Yang H (2017) Diversity-driven and facile 1, 3-dipolar cycloaddition to access dispirooxindole-imidazolidine scaffolds. Org Biomol Chem 15:8705

    Article  CAS  PubMed  Google Scholar 

  22. Halland N, Hazell RG, Jørgensen KA (2002) Organocatalytic asymmetric conjugate addition of nitroalkanes to α,β-unsaturated enones using novel imidazoline catalysts. J Org Chem 67:8331

    Article  CAS  PubMed  Google Scholar 

  23. Herrmann WA (2002) N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed 41:1290

    Article  CAS  Google Scholar 

  24. Arai T, Mishiro A, Yokoyama N, Suzuki K, Sato H (2010) Chiral bis (imidazolidine) pyridine–cu (OTf)2: catalytic asymmetric endo-selective [3+2] cycloaddition of imino esters with nitroalkenes. J Am Chem Soc 132:5338

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez-de-Castro A, Robertson CM, Xiao J (2014) Dehydrogenative α-oxygenation of ethers with an iron catalyst. J Am Chem Soc 136:8350

    Article  CAS  PubMed  Google Scholar 

  26. Allen AE, MacMillan DW (2011) Enantioselective α-arylation of aldehydes via the productive merger of iodonium salts and organocatalysis. J Am Chem Soc 133:4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erkkilä A, Majander I, Pihko PM (2007) Iminium catalysis. Chem Rev 107:5416

    Article  PubMed  Google Scholar 

  28. Prieto A, Halland N, Jørgensen KA (2005) Novel imidazolidine–tetrazole organocatalyst for asymmetric conjugate addition of nitroalkanes. Org Lett 7:3897

    Article  CAS  PubMed  Google Scholar 

  29. Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V (2013) Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem Rev 113:3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881

    Article  CAS  PubMed  Google Scholar 

  31. Roy S, Das SK, Khatua H, Das S, Chattopadhyay B (2021) Road map for the construction of high-valued N-heterocycles via denitrogenative annulation. Acc Chem Res 54:4395

    Article  CAS  PubMed  Google Scholar 

  32. Borkotoky L, Maurya RA (2022) Recent advances on α-azidoketones and esters in the synthesis of N‐heterocycles. Asian J Org Chem 11:e202200254

    Article  CAS  Google Scholar 

  33. Wang H, Zheng Y, Xu H, Zou J, Jin C (2022) Metal-free synthesis of N-heterocycles via intramolecular electrochemical C–H aminations. Front Chem 10:950635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou D, Wang W, Hu Y, Jia T (2023) Nitroarenes and nitroalkenes as potential amino sources for the synthesis of N-heterocycles. Org Biomol Chem 21:2254

    Article  CAS  PubMed  Google Scholar 

  35. Aronica LA, Albano G (2022) Supported metal catalysts for the synthesis of N-heterocycles. Catalysts 12:68

    Article  CAS  Google Scholar 

  36. Malek F, Harit T, Cherfi M, Kim B (2022) Insights on the synthesis of N-heterocycles containing macrocycles and their complexion and biological properties. Molecules 27:2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Ashraf GA (2022) Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: a review. Arab J Chem 15:104095

    Article  CAS  Google Scholar 

  38. Wang ZY, Liu Z, Wang N, Tong Y (2023) Propiolic acids in the synthesis of N-heterocycles. Mini Rev Org Chem 20:700

    Article  CAS  Google Scholar 

  39. Kumar SL, Servesh A, Kumar Sriwastav Y, Balasubramanian S, Tabassum S, Govindaraju S (2023) A bird’s-eye view on deep eutectic solvent‐mediated multicomponent synthesis of n‐heterocycles. ChemistrySelect 8:e202301054

    Article  Google Scholar 

  40. Yang K, Li Z, Hu Q, Elsaid M, Liu C, Chen J, Ge H (2022) Recent strategies in nickel-catalyzed C–H bond functionalization for nitrogen-containing heterocycles. Catalysts 12:1163

    Article  CAS  Google Scholar 

  41. Hong FL, Ye LW (2020) Transition metal-catalyzed tandem reactions of ynamides for divergent N-heterocycle synthesis. Acc Chem Res 53:2003

    Article  CAS  PubMed  Google Scholar 

  42. Chattopadhyay B, Gevorgyan V (2012) Transition-metal-catalyzed denitrogenative transannulation: converting triazoles into other heterocyclic systems. Angew Chem Int Ed 51:862

    Article  CAS  Google Scholar 

  43. Chattopadhyay B, Gevorgyan V (2012) Rhodium-catalyzed N-H insertion of pyridyl carbenes derived from pyridotriazoles: a general and efficient approach to 2-picolylamines and imidazo [1,2-a] pyridines. Angew Chem 124:886

    Article  ADS  Google Scholar 

  44. Akter M, Rupa K, Anbarasan P (2022) 1,2,3-triazole and its analogues: new surrogates for diazo compounds. Chem Rev 122:13108

    Article  CAS  PubMed  Google Scholar 

  45. Das SK, Roy S, Chattopadhyay B (2023) Transition-metal‐catalyzed denitrogenative annulation to access high‐valued N‐heterocycles. Angew Chem Int Ed 62:10912

    Article  Google Scholar 

  46. Candeias NR, Paterna R, Gois PMP (2016) Homologation reaction of ketones with Diazo compounds. Chem Rev 116:2937

    Article  CAS  PubMed  Google Scholar 

  47. Cheng QQ, Deng Y, Lankelma M, Doyle MP (2017) Cycloaddition reactions of enoldiazo compounds. Chem Soc Rev 46:5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Catalytic carbene insertion into C–H bonds. Chem Rev 110:704

    Article  CAS  PubMed  Google Scholar 

  49. Gillingham D, Fei N (2013) Catalytic X-H insertion reactions based on carbenoids. Chem Soc Rev 42:4918

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, Zhang J (2016) Gold-catalyzed transformations of α-diazocarbonyl compounds: selectivity and diversity. Chem Soc Rev 45:506

    Article  CAS  PubMed  Google Scholar 

  51. Rawat D, Adimurthy S (2022) Transannulation of pyridotriazoles with naphthoquinones and indoles: synthesis of benzo[f]pyrido [1,2-a] indoles and indolizino [3,2‐b] indoles. Adv Synth Catal 364:71

    Article  CAS  Google Scholar 

  52. Holzhauer L, Liagre C, Fuhr O, Jung N, Bräse S (2022) Scope of tetrazolo [1, 5-a] quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof. Beilstein J Org Chem 18:1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ilkin VG, Beryozkina TV, Willocx D, Silaichev PS, Veettil SP, Dehaen W, Bakulev VA (2022) Rhodium-catalyzed transannulation of 4,5-fused 1-sulfonyl-1,2,3-triazoles with nitriles. The selective formation of 1-sulfonyl-4, 5-fused imidazoles versus secondary C–H bond migration. J Org Chem 87:12274

    Article  CAS  PubMed  Google Scholar 

  54. Voloshkin VA, Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP (2022) Annulation-triggered denitrogenative transformations of 2–(5- Iodo-1,2,3-triazolyl)benzoic acids. J Org Chem 8:7064

    Article  Google Scholar 

  55. Yan W, Luo H, Wu Q, Liu L, Li J, Wei J (2022) Cp*RhIII-catalyzed cascade annulation of arylimidates with pyridotriazoles toward isoquinolin-3-ol derivatives. J Org Chem 87:10858

    Article  CAS  PubMed  Google Scholar 

  56. Thorat VH, Tsai YL, Huang YR, Cheng CH, Hsieh JC (2022) Nickel-catalyzed denitrogenative cyclization of 1,2,3,4-benzothiatriazin-1,1(2H)-dioxides with arynes to synthesize biaryl sultams. Org Lett 24:2915

    Article  CAS  PubMed  Google Scholar 

  57. Sontakke GS, Pal K, Volla CMR (2022) Substrate-dependent denitrogenative rearrangements of rhodium azavinyl carbenes involving 1,2-Aryl Migration. Org Lett 24:8796

    Article  CAS  PubMed  Google Scholar 

  58. Chen SJ, He ZQ, Chen GS, Zhao C, Chen CP, Zhuang YY, Chen L, Liu YL (2022) Synthesis of CF3-substituted alkylamines, 1,2-bisazoles, and 1,4,5,6-tetrahydro-1,2,4-triazines from newly designed tetrazole-activated trifluoromethyl alkenes. Org Lett 24:9301

    Article  CAS  PubMed  Google Scholar 

  59. Lv G, Zhang Q, Zhang C, Chen Y, Lin Z, Lai R, Yang Z, Wu Y (2023) The pyridotriazole works as a traceless directing group: a C–H activation/annulation cascade reaction with iodonium ylides. Org Lett 25:4022

    Article  CAS  PubMed  Google Scholar 

  60. Yamamoto YKK, Kuriyama M, Onomura O (2022) Rhodium-catalyzed transannulation of N-sulfonyl-1,2,3-triazoles with carboxylic esters. Adv Synth Catal 364:3081

    Article  Google Scholar 

  61. Dong Z, Ma MY, Xu J, Yang Z (2022) Catalytic [3 + 2] umpolung annulations of α-thioacyl carbenes with aryl isothiocyanates. Chem Commun 58:7980

    Article  CAS  Google Scholar 

  62. Kotovshchikov YN, Sultanov RH, Latyshev GV, Lukashev NV, Beletskaya IP (2022) Domino assembly of dithiocarbamates via Cu-catalyzed denitrogenative thiolation of iodotriazole-based diazo precursors. Org Biomol Chem 20:5764

    Article  CAS  PubMed  Google Scholar 

  63. Strashkov DM, Zavyalov KV, Sakharov PA, Agafonova AV, Rostovskii NV, Khlebnikov AF, Noviko MS (2023) Rhodium-catalyzed migrative annulation and olefination of 2-aroylpyrroles with diazoesters. Org Chem Front 10:506

    Article  CAS  Google Scholar 

  64. Song W, Liu Y, Yan N, Wan JP (2023) Tunable key [3 + 2] and [2 + 1] cycloaddition of enaminones and α-diazo compounds for the synthesis of Isomeric isoxazoles: metal-controlled selectivity. Org Lett 25:2139

    Article  CAS  PubMed  Google Scholar 

  65. Yu S, Zhou L, Ye S, Tong X (2023) Domino sequences involving stereoselective hydrazone-type heck reaction and denitrogenative [1,5]-sigmatropic rearrangement. J Am Chem Soc 145:7621

    Article  CAS  PubMed  Google Scholar 

  66. Mou CX, Yuan JW, Hu Q, Han BJ, Yang LR, Xiao YM, Fan LL, Zhang SR, Quc LB (2023) Copper-catalyzed oxidative direct C3-cyanoarylation of quinoxalin-2(1H)-ones via denitrogenative ring-opening of 3-aminoindazoles. New J Chem 47:3783

    Article  CAS  Google Scholar 

  67. Feng G, Meng J, Xu S, Gao Y, Zhua Y, Huanga Z (2022) Copper-catalyzed cross coupling reaction of sulfonyl hydrazides with 3-aminoindazoles. RSC Adv 12:30432

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhendu Chakroborty or Nilima Priyadarsini Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the wrong figure appeared as Scheme 2; and it has been updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D.R., Chakroborty, S., Lalitha, P. et al. Advances in Metal-Catalyzed Denitrogenative Pathways for N-Heterocycle Synthesis. Top Catal 67, 246–262 (2024). https://doi.org/10.1007/s11244-023-01880-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01880-x

Keywords

Navigation