Skip to main content
Log in

Ecofriendly 3D Printed TiO2/SiO2/Polymer Scaffolds for Dye Removal

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Numerous catalysts for water pollutant mitigation have been developed over recent decades. However, the utilization of catalysts embedded in 3D structures remains challenging. This study aims at fabricating 3D-printed TiO2/SiO2/polymer scaffolds for the degradation of organic dyes, specifically Methylene Blue (MB) and rhodamine B (Rh B). The TiO2/SiO2/polymer scaffolds were fabricated by stereolithography (SLA) technique, using TiO2 photocatalyst synthesized via a solution combustion process, silica adsorbent prepared from sugarcane leaves, and photocurable resin as feedstock. X-ray diffraction analysis confirmed that TiO2 exhibited anatase/rutile/brookite triphasic structure while SiO2 possessed amorphous structure. Scanning electron micrographs revealed that TiO2 and SiO2 particles uniformly deposited on the surface of the photocurable resin. The adsorption activity of the TiO2/SiO2/polymer scaffolds was examined in the dark for 24 h to ensure that adsorption equilibrium was achieved. Photocatalytic examinations were conducted under UV light (λ = 365 nm). The TiO2/SiO2/polymer scaffolds efficiently demonstrated their potential dye removal efficiency against MB and Rh B dyes as 81.9% and 60%, respectively. Reusability testing revealed that after hydrogen peroxide treatment, the used scaffolds exhibited the degradation ability in a comparable range to the as-fabricated scaffolds. An application of a 3D printing technique for water pollution reduction was successfully demonstrated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be made available upon request.

References

  1. Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2012) Desalin Water Treat 41:131–169

    Article  CAS  Google Scholar 

  2. Srivatsav P, Bhargav BS, Shanmugasundaram V, Arun J, Gopinath KP, Bhatnagar A (2020) Water 12:3561

    Article  CAS  Google Scholar 

  3. Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S (2003) Bioresour Technol 87:129–132

    Article  CAS  PubMed  Google Scholar 

  4. Allouche FN, Yassaa N (2018) IOP Conf Ser Mater Sci Eng 323:012006

    Article  Google Scholar 

  5. Han TH, Khan MM, Kalathil S, Lee J, Cho MH (2013) Ind Eng Chem Res 52:8174–8181

    Article  CAS  Google Scholar 

  6. Kayabaşı Y, Erbaş O (2020) Demiroglu Sci Univ Florence Nightingale J Med 6:136–145

    Article  Google Scholar 

  7. Khan I, Saeed K, Zekker I, Zhang B, Hendi AH, Ahmad A, Ahmad S, Zada N, Ahmad H, Shah LA (2022) Water 14:242. https://doi.org/10.3390/w14020242

    Article  CAS  Google Scholar 

  8. Weng C-H, Pan Y-F (2007) J Hazard Mater 144:355–362

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava V, Sillanpää M (2017) J Environ Sci 51:97–110

    Article  CAS  Google Scholar 

  10. Ahn D-H, Chang W-S, Yoon T-I (1999) Process Biochem 34:429–439

    Article  CAS  Google Scholar 

  11. Bergamonti L, Gentili S, Acquotti D, Tegoni M, Lottici PP, Graiff C (2021) J Hazard Mater 410:124585

    Article  CAS  PubMed  Google Scholar 

  12. Kandisa R, Narayana SKV, Khasim BS, Gopinath R (2016) J Bioremediation Biodegrad 7:6

    Google Scholar 

  13. Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK (2022) Bioresour Technol 343:126154

    Article  CAS  PubMed  Google Scholar 

  14. Visvanathan C, Aim RB, Parameshwaran K (2000) Crit Rev Environ Sci Technol 30:1–48

    Article  CAS  Google Scholar 

  15. Wong S, Ghafar NA, Ngadi N, Razmi FA, Inuwa IM, Mat R, Amin NAS (2020) Sci Rep 10:2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) J Am Chem Soc 129:2669–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Darvishi Cheshmeh Soltani R, Khataee AR, Safari M, Joo SW (2013) I Int Biodeterior Biodegradation 85:383–391

    Article  CAS  Google Scholar 

  18. Cansee S (2010) Am J Eng Appl Sci 3:186–188

    Article  Google Scholar 

  19. Pipitpukdee S, Attavanich W, Bejranonda S (2020) Atmosphere (Basel) 11:408

    Article  Google Scholar 

  20. Rostamian R, Najafi M, Rafati AA (2011) Chem Eng J 171:1004–1011

    Article  CAS  Google Scholar 

  21. Rovani S, Santos JJ, Corio P, Fungaro DA (2018) ACS Omega 3:2618–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silalertruksa T, Gheewala SH (2018) J Clean Prod 182:521–528

    Article  Google Scholar 

  23. Le Blond JS, Horwell CJ, Williamson BJ, Oppenheimer C (2010) J Environ Monit 12:1459–1470

    Article  PubMed  Google Scholar 

  24. Oo HM, Karin P, Chollacoop N, Hanamura K (2021) J Environ Sci 99:296–310

    Article  CAS  Google Scholar 

  25. Siddiqui B, Haq I-u, Al-Dossary AA, Elaissari A, Ahmed N (2022) Int J Pharm X 4:100116

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong D, Cheng C, Wang Y, Wong JI, Yang Y, Yang HY (2015) J Mater Chem A 3:16150–16161

    Article  CAS  Google Scholar 

  27. Raj SI, Jaiswal A, Uddin I (2019) RSC Adv 9:11212–11219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen J, Xiong Y, Duan M, Li X, Li J, Fang S, Qin S, Zhang R (2020) Langmuir 36:520–533

    Article  CAS  PubMed  Google Scholar 

  29. Elshabrawy O, Horwell C, Williamson B, Oppenheimer C (2010). J Environ Sci Technol. https://doi.org/10.1007/s13762-023-04831-x

    Article  Google Scholar 

  30. Solís-Casados DA, Elhussieny AA, Taha MM, Pal K, Fahim IS (2023) Int J 63:564–574

    Google Scholar 

  31. Abdullah FH, Bakar NHHA, Bakar MA (2022) J Hazard Mater 424:127416

    Article  CAS  PubMed  Google Scholar 

  32. Bergamonti L, Graiff C, Bergonzi C, Potenza M, Reverberi C, Ossiprandi MC, Lottici PP, Bettini R, Elviri L (2022) Catal 12:580

    CAS  Google Scholar 

  33. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Water Res 88:428–448

    Article  CAS  PubMed  Google Scholar 

  34. Lee S-Y, Park S-J (2013) J Ind Eng Chem 19:1761–1769

    Article  CAS  Google Scholar 

  35. Sing KS (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  36. Chen X, Jiang J, Yan F, Tian S, Li K (2014) RSC Adv 4:8703–8710

    Article  CAS  Google Scholar 

  37. Younis SA, Amdeha E, El-Salamony RA (2021) J Environ Chem Eng 9:104619

    Article  CAS  Google Scholar 

  38. Ferreira-Neto EP, Ullah S, Da Silva TC, Domeneguetti RR, Perissinotto AP, De Vicente FS, Rodrigues-Filho UP, Ribeiro SJ (2020) ACS Appl Mater Interf. 12:41627–41643

    Article  CAS  Google Scholar 

  39. Szatkowski T, Siwińska-Stefańska K, Wysokowski M, Stelling AL, Joseph Y, Ehrlich H, Jesionowski T (2017) Biomimetics 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto H, Demura T, Morita M, Kono S, Sekine K, Shinada T, Nakamura S, Tanii T (2014) Biofabrication 6:035021

    Article  CAS  PubMed  Google Scholar 

  41. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK (2021) Polymers (Basel) 13:3101

    Article  CAS  PubMed  Google Scholar 

  42. Huang J, Qin Q, Wang J (2020) Processes 8:1138

    Article  CAS  Google Scholar 

  43. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Compos Part B Eng 143:172–196

    Article  CAS  Google Scholar 

  44. Relinque JJ, Romero-Ocaña I, Navas-Martos FJ, Delgado FJ, Domínguez M, Molina SI (2020) Polymers Basel 12:1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gdula K, Dąbrowski A, Skwarek E (2016) Adsorption 22:681–688

    Article  CAS  Google Scholar 

  46. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Sci Rep 4:4043

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zabar Z, Merabet S, Abdullah AH, Khezami L, Bououdina M (2022) Environ Nanotechnol Monit Manag 18:100734

    CAS  Google Scholar 

  48. Zhang J, Zhou P, Liu J, Yu J (2014) Phys Chem Chem Phys 16:20382–20386

    Article  CAS  PubMed  Google Scholar 

  49. Manzoli M, Freyria FS, Blangetti N, Bonelli B (2022) RSC Adv 12:3322–3334

    Article  CAS  Google Scholar 

  50. Luo Z, Poyraz AS, Kuo C-H, Miao R, Meng Y, Chen S-Y, Jiang T, Wenos C, Suib SL (2015) Chem Mater 27:6–17

    Article  CAS  Google Scholar 

  51. Preethi LK, Mathews T, Nand M, Jha SN, Gopinath CS, Dash S (2017) Appl Catal B Environ 218:9–19

    Article  CAS  Google Scholar 

  52. Mizutaru T, Sakuraba T, Nakayama T, Marzun G, Wagener P, Rehbock C, Barcikowski S, Murakami K, Fujita J, Ishii N, Yamamoto Y (2015) J Mater Chem A 3:17612–17619

    Article  CAS  Google Scholar 

  53. Grosman A, Ortega C (2008) Langmuir 24:3977–3986

    Article  CAS  PubMed  Google Scholar 

  54. El-Samak AA, Ponnamma D, Hassan MK, Al-Maadeed MAA (2022) Microporous Mesoporous Mater 341:111994

    Article  CAS  Google Scholar 

  55. Yang Z-Y, Shen G-Y, He Y-P, Liu X-X, Yang S-J (2016) J Porous Mater 23:589–599

    Article  CAS  Google Scholar 

  56. Joseph CG, Taufiq-Yap YH, Musta B, Sarjadi MS, Elilarasi L (2021). Front Chem. https://doi.org/10.3389/fchem.2020.568063

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kumbhakar P, Ambekar R, Mahapatra P, Tiwary C (2021) J Hazard Mater 418:126383

    Article  CAS  PubMed  Google Scholar 

  58. Rápó E, Tonk S (2021) Molecules 26:5419

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jinendra U, Bilehal D, Nagabhushana BM, Kumar AP (2021) Heliyon 7:06851

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by International Collaborative Education Program for Material Technology, Education, and Research (ICE-Matter), ASEAN University Network, Southeast Asia Engineering Education Development Network (AUN/SEED-Net), Japan International Cooperation Agency (JICA), and the Kasetsart University Research and Development Institute (KURDI, grant no. FF(KU) 25.64). This work was also financially supported by the Office of the Ministry of Higher Education, Science, Research and Innovation; and the Thailand Science Research and Innovation through the Kasetsart University Reinventing University Program

Funding

Asean University Network,Kasetsart University Research and Development Institute, FF(KU) 25.64, Gasidit Panomsuwan, Science and Technology Postgraduate Education and Research Development Office, Office of the Higher Education Commission, Kasetsart University Reinventing University Program,Oratai Jongprateep

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gasidit Panomsuwan or Oratai Jongprateep.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansiddhi, A., Panomsuwan, G., Hussakan, C. et al. Ecofriendly 3D Printed TiO2/SiO2/Polymer Scaffolds for Dye Removal. Top Catal 66, 1662–1673 (2023). https://doi.org/10.1007/s11244-023-01864-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01864-x

Keywords

Navigation