Skip to main content
Log in

Precise Design of Titanium Dioxide Nanoparticles Using Nanostructured Solids as Template

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Precise design of the shape and the size of titanium dioxide particle is a key for many application. Among available methods, in the present review, those using porous template are summarized. Porous materials especially nanoporous materials with periodic pore structures are attractive to prepare nanoparticles with precisely controlled shape and size. SBA-15, one of the mesoporous silica, has been used most extensively due to the pore size suitable as template to design titanium dioxide nanoparticle. Synthetic methods and characterization have been extensively examined to design nanoarchitecture of titanium dioxide-nanoporous solids precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data are available upon request.

6. References

  1. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  2. Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrogen Energy 32(14):2664–2672. https://doi.org/10.1016/j.ijhydene.2006.09.009

    Article  CAS  Google Scholar 

  3. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 19(14):145605. https://doi.org/10.1088/0957-4484/19/14/145605

    Article  CAS  PubMed  Google Scholar 

  4. Zhang R, Bai Y, Zhang B, Chen L, Yan B (2012) The potential health risk of titania nanoparticles. J Hazard Mater 211–212:404–413. https://doi.org/10.1016/j.jhazmat.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  5. Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26(9):1167–1170. https://doi.org/10.1039/B202140D

    Article  CAS  Google Scholar 

  6. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74(3):241–248. https://doi.org/10.1016/S0920-5861(02)00027-5

    Article  CAS  Google Scholar 

  7. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal Lett 80(3):111–114. https://doi.org/10.1023/A:1015400223708

    Article  CAS  Google Scholar 

  8. Matsuoka M, Anpo M (2003) Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites. J Photochem Photobiol C 3(3):225–252. https://doi.org/10.1016/S1389-5567(02)00040-0

    Article  CAS  Google Scholar 

  9. Ogawa M, Ikeue K, Anpo M (2001) Transparent self-standing films of titanium-containing nanoporous silica. Chem Mater 13(9):2900–2904. https://doi.org/10.1021/cm0102281

    Article  CAS  Google Scholar 

  10. Morita M, Horiuchi Y, Matsuoka M, Ogawa M (2022) Preparation of titanium-containing layered alkali silicates. Cryst Growth Des 22(3):1638–1644. https://doi.org/10.1021/acs.cgd.1c01158

    Article  CAS  Google Scholar 

  11. Morita M, Ogawa M (2023) Preparation, characterization, and photocatalysts’ application of silicas/silicates with nanospaces containing single-site Ti-oxo species. In: Wang X, Anpo M, Fu X (eds) UV-visible photocatalysis for clean energy production and pollution remediation:materials, reaction mechanisms, and applications. Wiley-VCH, pp 199–212

    Chapter  Google Scholar 

  12. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368(6469):321–323. https://doi.org/10.1038/368321a0

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz-Hitzky E, Aranda P, Akkari M, Khaorapapong N, Ogawa M (2019) Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein J Nanotechnol 10:1140–1156. https://doi.org/10.3762/bjnano.10.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goto T, Ogawa M (2015) Visible-light-responsive photocatalytic flow reactor composed of titania film photosensitized by metal complex-clay hybrid. ACS Appl Mater Interfaces 7(23):12631–12634. https://doi.org/10.1021/acsami.5b03128

    Article  CAS  PubMed  Google Scholar 

  15. Deepracha S, Bureekaew S, Ogawa M (2019) Synergy effects of the complexation of a titania and a smectite on the film formation and its photocatalyst’ performance. Appl Clay Sci 169:129–134. https://doi.org/10.1016/j.clay.2018.12.005

    Article  CAS  Google Scholar 

  16. Deepracha S, Atfane L, Ayral A, Ogawa M (2021) Simple and efficient method for functionalizing photocatalytic ceramic membranes and assessment of its applicability for wastewater treatment in up-scalable membrane reactors. Sep Purif Technol 262:118307. https://doi.org/10.1016/j.seppur.2021.118307

    Article  CAS  Google Scholar 

  17. Kobayashi M, Osada M, Kato H, Kakihana M (2015) Design of crystal structures, morphologies and functionalities of titanium oxide using water-soluble complexes and molecular control agents. Polym J 47(2):78–83. https://doi.org/10.1038/pj.2014.89

    Article  CAS  Google Scholar 

  18. Han S, Choi S-H, Kim S-S, Cho M, Jang B, Kim D-Y, Yoon J, Hyeon T (2005) Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1(8–9):812–816. https://doi.org/10.1002/smll.200400142

    Article  CAS  PubMed  Google Scholar 

  19. Yahaya MZ, Abdullah MZ, Mohamad AA (2015) Centrifuge and storage precipitation of TiO2 nanoparticles by the sol–gel method. J Alloys Compd 651:557–564. https://doi.org/10.1016/j.jallcom.2015.08.110

    Article  CAS  Google Scholar 

  20. Pardon N, Omobola O, Henry M, Raymond T, Simcelile Z (2018) Synthetic methods for titanium dioxide nanoparticles: A review. In: Dongfang Y (eds) Titanium Dioxide. IntechOpen, Rijeka, Ch. 8. https://doi.org/10.5772/intechopen.75425

  21. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341. https://doi.org/10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  22. Schubert U (2005) Chemical modification of titanium alkoxides for sol–gel processing. J Mater Chem 15(35–36):3701–3715. https://doi.org/10.1039/B504269K

    Article  CAS  Google Scholar 

  23. Tricoli A, Righettoni M, Teleki A (2010) Semiconductor gas sensors: dry synthesis and application. Angew Chem Int Ed 49(42):7632–7659. https://doi.org/10.1002/anie.200903801

    Article  CAS  Google Scholar 

  24. Baryshnikova MV, Filatov LA, Petrov AS, Alexandrov SE (2015) CVD deposited titania thin films for gas sensors with improved operating characteristics. Chem Vap Deposition 21:327–333. https://doi.org/10.1002/cvde.201507187

    Article  CAS  Google Scholar 

  25. Mills A, Elliott N, Parkin IP, O’Neill SA, Clark RJ (2002) Novel TiO2 CVD films for semiconductor photocatalysis. J Photochem Photobiol A 151(1):171–179. https://doi.org/10.1016/S1010-6030(02)00190-9

    Article  CAS  Google Scholar 

  26. Gun’ko VM, Zarko VI, Turov VV, Leboda R, Chibowski E, Holysz L, Pakhlov EM, Voronin EF, Dudnik VV, Gornikov YI (1998) CVD-titania on fumed silica substrate. J Colloid Interface Sci 198(1):141–156. https://doi.org/10.1006/jcis.1997.5270

    Article  CAS  Google Scholar 

  27. Ding Z, Hu X, Lu GQ, Yue P-L, Greenfield PF (2000) Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir 16(15):6216–6222

    Article  CAS  Google Scholar 

  28. Karches M, Morstein M, Rudolf von Rohr P, Pozzo RL, Giombi JL, Baltanás MA (2002) Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal Today 72(3):267–279. https://doi.org/10.1016/S0920-5861(01)00505-3

    Article  CAS  Google Scholar 

  29. Li Puma G, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157(2):209–219. https://doi.org/10.1016/j.jhazmat.2008.01.040

    Article  CAS  PubMed  Google Scholar 

  30. Crick CR, Parkin IP (2011) Aerosol assisted deposition of melamine-formaldehyde resin: hydrophobic thin films from a hydrophilic material. Thin Solid Films 519(7):2181–2186. https://doi.org/10.1016/j.tsf.2010.10.062

    Article  CAS  Google Scholar 

  31. Shiba K, Onaka K, Ogawa M (2012) Preparation of mono-dispersed titanium oxide–octadecylamine hybrid spherical particles in the submicron size range. RSC Adv 2(4):1343–1349. https://doi.org/10.1039/C1RA00748C

    Article  CAS  Google Scholar 

  32. Shiba K, Sato S, Ogawa M (2012) Preparation of well-defined titania–silica spherical particles. J Mater Chem 22(19):9963–9969. https://doi.org/10.1039/C2JM30502J

    Article  CAS  Google Scholar 

  33. Shiba K, Ogawa M (2012) Chemical etching route to prepare nanometer-size spherical Titania–Octadecylamine hybrid particles. Chem Lett 41(5):479–481. https://doi.org/10.1246/cl.2012.479

    Article  CAS  Google Scholar 

  34. Shiba K, Ogawa M (2009) Microfluidic syntheses of well-defined sub-micron nanoporous titania spherical particles. Chem Commun 44:6851–6853. https://doi.org/10.1039/B914322J

    Article  Google Scholar 

  35. Shiba K, Ogawa M (2018) Precise synthesis of well-defined inorganic-organic hybrid particles. Chem Rec 18(7–8):950–968. https://doi.org/10.1002/tcr.201700077

    Article  CAS  PubMed  Google Scholar 

  36. Shiba K, Takei T, Yoshikawa G, Ogawa M (2017) Deposition of a titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties. Nanoscale 9(43):16791–16799. https://doi.org/10.1039/C7NR06086F

    Article  CAS  PubMed  Google Scholar 

  37. Kormann C, Bahnemann DW, Hoffmann MR (1988) Preparation and characterization of quantum-size titanium dioxide. J Phy Chem 92(18):5196–5201. https://doi.org/10.1021/j100329a027

    Article  CAS  Google Scholar 

  38. Madhusudan Reddy K, Gopal Reddy CV, Manorama SV (2001) Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2. J Solid State Chem 158(2):180–186. https://doi.org/10.1006/jssc.2001.9090

    Article  CAS  Google Scholar 

  39. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12(9):798–801. https://doi.org/10.1038/nmat3697

    Article  CAS  PubMed  Google Scholar 

  40. Yun H-S, Miyazawa K, Zhou HS, Honma I, Kuwabara M (2001) Synthesis of mesoporous thin TiO2 films with hexagonal pore structures using triblock copolymer templates. Adv Mater 13(18):1377–1380. https://doi.org/10.1002/1521-4095(200109)13:18%3c1377::AID-ADMA1377%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  41. Gajjela SR, Ananthanarayanan K, Yap C, Grätzel M, Balaya P (2010) Synthesis of mesoporous titanium dioxide by soft template based approach: characterization and application in dye-sensitized solar cells. Energy Environ Sci 3(6):838–845. https://doi.org/10.1039/B921360K

    Article  CAS  Google Scholar 

  42. Liang Q, Liu X, Zeng G, Liu Z, Tang L, Shao B, Zeng Z, Zhang W, Liu Y, Cheng M, Tang W, Gong S (2019) Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application. Chem Eng J 372:429–451. https://doi.org/10.1016/j.cej.2019.04.168

    Article  CAS  Google Scholar 

  43. Li H, Ha C-S, Kim I (2008) Facile fabrication of hollow silica and titania microspheres using plasma-treated polystyrene spheres as sacrificial templates. Langmuir 24(19):10552–10556. https://doi.org/10.1021/la801686z

    Article  CAS  PubMed  Google Scholar 

  44. Geng G, Zhang Z, Li C, Pan R, Li Y, Yang H, Li J (2022) Atomic layer assembly based on sacrificial templates for 3D nanofabrication. Micromachines 13(6):856

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sordello F, Duca C, Maurino V, Minero C (2011) Photocatalytic metamaterials: TiO2 inverse opals. Chem Commun 47(21):6147–6149. https://doi.org/10.1039/C1CC11243K

    Article  CAS  Google Scholar 

  46. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216(1):298–312. https://doi.org/10.1016/S0021-9517(02)00132-X

    Article  CAS  Google Scholar 

  47. Corma A, Navarro MT, Pariente JP (1994) Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J Chem Soc Chem Commun 2:147–148. https://doi.org/10.1039/C39940000147

    Article  Google Scholar 

  48. Geobaldo F, Bordiga S, Zecchina A, Giamello E, Leofanti G, Petrini G (1992) DRS UV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite. Catal Lett 16(1):109–115. https://doi.org/10.1007/BF00764360

    Article  CAS  Google Scholar 

  49. Anpo M (2013) Photocatalytic reduction of CO2 with H2O on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis. J CO2 Util 1:8–17. https://doi.org/10.1016/j.jcou.2013.03.005

    Article  CAS  Google Scholar 

  50. Yamashita H, Mori K, Kuwahara Y, Kamegawa T, Wen M, Verma P, Che M (2018) Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chem Soc Rev 47(22):8072–8096. https://doi.org/10.1039/C8CS00341F

    Article  CAS  PubMed  Google Scholar 

  51. Munguti LK, Dejene FB, Muthee DK (2023) Zeolite Na-A supported TiO2: effects of TiO2 loading on structural, optical and adsorption properties. Mater Sci Eng B 289:116281. https://doi.org/10.1016/j.mseb.2023.116281

    Article  CAS  Google Scholar 

  52. Tsaplin DE, Ostroumova VA, Kulikov LA, Zolotukhina AV, Sadovnikov AA, Kryuchkov MD, Egazaryants SV, Maksimov AL, Wang K, Luo Z, Naranov ER (2023) Synthesis and investigation of zeolite TiO2/Al-ZSM-12 structure and properties. Catalysts 13(2):216

    Article  CAS  Google Scholar 

  53. Dinh VT, Thu PA, An NT, Nhan DNT, Long NQ (2018) Toluene removal under humid conditions by synergistic adsorption–photocatalysis using nano TiO2 supported on ZSM-5 synthesized from rice-husk without structure-directing agent. React Kinet Mech Catal 125(2):1039–1054. https://doi.org/10.1007/s11144-018-1452-7

    Article  CAS  Google Scholar 

  54. Znad H, Abbas K, Hena S, Awual MR (2018) Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng 6(1):218–227. https://doi.org/10.1016/j.jece.2017.11.077

    Article  CAS  Google Scholar 

  55. Amereh E, Afshar S (2010) Photodegradation of acetophenone and toluene in water by nano-TiO2 powder supported on NaX zeolite. Mater Chem Phys 120(2):356–360. https://doi.org/10.1016/j.matchemphys.2009.11.019

    Article  CAS  Google Scholar 

  56. Mohamed RM, Baeissa ES (2013) Mordenite encapsulated with Pt–TiO2: characterization and applications for photocatalytic degradation of direct blue dye. J Alloys Compd 558:68–72. https://doi.org/10.1016/j.jallcom.2013.01.041

    Article  CAS  Google Scholar 

  57. Easwaramoorthi S, Natarajan P (2005) Photophysical properties of phenosafranine (PHNS) adsorbed on the TiO2-incorporated zeolite-Y. Microporous Mesoporous Mater 86(1):185–190. https://doi.org/10.1016/j.micromeso.2005.07.009

    Article  CAS  Google Scholar 

  58. Piedra López JG, González Pichardo OH, Pinedo Escobar JA, de Haro del Río DA, Inchaurregui Méndez H, González Rodríguez LM, (2021) Photocatalytic degradation of metoprolol in aqueous medium using a TiO2/natural zeolite composite. Fuel 284:119030. https://doi.org/10.1016/j.fuel.2020.119030

    Article  CAS  Google Scholar 

  59. Neppolian B, Mine S, Horiuchi Y, Bianchi CL, Matsuoka M, Dionysiou DD, Anpo M (2016) Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-TiO2/Zeolite (H-ZSM). Chemosphere 153:237–243. https://doi.org/10.1016/j.chemosphere.2016.03.063

    Article  CAS  PubMed  Google Scholar 

  60. Chen C, Wu T, Yang D, Zhang P, Liu H, Yang Y, Yang G, Han B (2018) Catalysis of photooxidation reactions through transformation between Cu2+ and Cu+ in TiO2–Cu–MOF composites. Chem Commun 54(47):5984–5987. https://doi.org/10.1039/C8CC03505A

    Article  CAS  Google Scholar 

  61. Jawdat FH, Lin J, Dou SX, Park M-S, Nattestad A, Kim JH (2019) Oxygen-deficient TiO2-δ synthesized from MIL-125 metal-organic framework for photocatalytic dye degradation. Bull Chem Soc Jpn 92(12):2012–2018. https://doi.org/10.1246/bcsj.20190238

    Article  CAS  Google Scholar 

  62. Ma Y, Lu Y, Hai G, Dong W, Li R, Liu J, Wang G (2020) Bidentate carboxylate linked TiO2 with NH2-MIL-101(Fe) photocatalyst: a conjugation effect platform for high photocatalytic activity under visible light irradiation. Sci Bull 65(8):658–669. https://doi.org/10.1016/j.scib.2020.02.001

    Article  CAS  Google Scholar 

  63. Hall AS, Kondo A, Maeda K, Mallouk TE (2013) Microporous brookite-phase titania made by replication of a metal–organic framework. J Am Chem Soc 135(44):16276–16279. https://doi.org/10.1021/ja4083254

    Article  CAS  PubMed  Google Scholar 

  64. Zhai L, Qian Y, Wang Y, Cheng Y, Dong J, Peh SB, Zhao D (2018) In situ formation of micropore-rich titanium dioxide from metal–organic framework templates. ACS Appl Mater Interfaces 10(43):36933–36940. https://doi.org/10.1021/acsami.8b11920

    Article  CAS  PubMed  Google Scholar 

  65. Yang H, Kruger PE, Telfer SG (2015) Metal–organic framework nanocrystals as sacrificial templates for hollow and exceptionally porous titania and composite materials. Inorg Chem 54(19):9483–9490. https://doi.org/10.1021/acs.inorgchem.5b01352

    Article  CAS  PubMed  Google Scholar 

  66. Sheng H, Chen D, Li N, Xu Q, Li H, He J, Lu J (2017) Urchin-inspired TiO2@MIL-101 double-shell hollow particles: adsorption and highly efficient photocatalytic degradation of hydrogen sulfide. Chem Mater 29(13):5612–5616. https://doi.org/10.1021/acs.chemmater.7b01243

    Article  CAS  Google Scholar 

  67. Wang X, Shi J, Zhang S, Wu H, Jiang Z, Yang C, Wang Y, Tang L, Yan A (2015) MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization. J Mater Chem B 3(32):6587–6598. https://doi.org/10.1039/C5TB00870K

    Article  CAS  PubMed  Google Scholar 

  68. Dwyer DB, Lee DT, Boyer S, Bernier WE, Parsons GN, Jones WE Jr (2018) Toxic organophosphate hydrolysis using nanofiber-templated UiO-66-NH2 metal–organic framework polycrystalline cylinders. ACS Appl Mater Interfaces 10(30):25794–25803. https://doi.org/10.1021/acsami.8b08167

    Article  CAS  PubMed  Google Scholar 

  69. Wan Y, Zhao (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860. https://doi.org/10.1021/cr068020s

    Article  CAS  PubMed  Google Scholar 

  70. Vibulyaseak K, Deepracha S, Ogawa M (2019) Immobilization of titanium dioxide in mesoporous silicas: structural design and characterization. J Solid State Chem 270:162–172. https://doi.org/10.1016/j.jssc.2018.09.043

    Article  CAS  Google Scholar 

  71. Araújo MM, Silva LKR, Sczancoski JC, Orlandi MO, Longo E, Santos AGD, Sá JLS, Santos RS, Luz GE, Cavalcante LS (2016) Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior. Appl Surf Sci 389:1137–1147. https://doi.org/10.1016/j.apsusc.2016.08.018

    Article  CAS  Google Scholar 

  72. Artkla S, Kim W, Choi W, Wittayakun J (2009) Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica. Appl Catal B 91(1):157–164. https://doi.org/10.1016/j.apcatb.2009.05.019

    Article  CAS  Google Scholar 

  73. Barrera-A JM, García-M JA, Jiménez-G AE, Zanella-S R, Gelover-S LS, Durán-Domínguez-de-Bazúa MC (2014) Titanium dioxide supported in mesoporous material (SBA-15) to remove the textile dye reactive blue 69 in aqueous solution. J Adv Oxid Technol 17(1):152–158. https://doi.org/10.1515/jaots-2014-0122

    Article  Google Scholar 

  74. Beyers E, Biermans E, Ribbens S, De Witte K, Mertens M, Meynen V, Bals S, Van Tendeloo G, Vansant EF, Cool P (2009) Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles. Appl Catal B 88(3):515–524. https://doi.org/10.1016/j.apcatb.2008.10.009

    Article  CAS  Google Scholar 

  75. Bhattacharyya A, Kawi S, Ray MB (2004) Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catal Today 98(3):431–439. https://doi.org/10.1016/j.cattod.2004.08.010

    Article  CAS  Google Scholar 

  76. Conceição DS, Graça CAL, Ferreira DP, Ferraria AM, Fonseca IM, Botelho do RegoTeixeiraVieira Ferreira AMACSCLF (2017) Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants. Microporous Mesoporous Mater 253:203–214. https://doi.org/10.1016/j.micromeso.2017.07.013

    Article  CAS  Google Scholar 

  77. Parida K, Mishra KG, Dash SK (2012) Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies. J Hazard Mater 241–242:395–403. https://doi.org/10.1016/j.jhazmat.2012.09.052

    Article  CAS  PubMed  Google Scholar 

  78. Phanikrishna Sharma MV, Durga Kumari V, Subrahmanyam M (2008) Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere 72(4):644–651. https://doi.org/10.1016/j.chemosphere.2008.02.042

    Article  CAS  PubMed  Google Scholar 

  79. Sakai H, Kubota Y, Yamaguchi K, Fukuoka H, Inumaru K (2013) Photocatalytic decomposition of 2-propanol and acetone in air by nanocomposites of pre-formed TiO2 particles and mesoporous silica. J Porous Mater 20(4):693–699. https://doi.org/10.1007/s10934-012-9643-5

    Article  CAS  Google Scholar 

  80. Salameh C, Nogier J-P, Launay F, Boutros M (2015) Dispersion of colloidal TiO2 nanoparticles on mesoporous materials targeting photocatalysis applications. Catal Today 257:35–40. https://doi.org/10.1016/j.cattod.2015.03.025

    Article  CAS  Google Scholar 

  81. Šuligoj A, Štangar U, Tušar N (2014) Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate. Chem Pap 68(9):1265–1272. https://doi.org/10.2478/s11696-014-0553-7

    Article  CAS  Google Scholar 

  82. Xie X-D, Zhou K, Chen B-Y, Chang C-T (2016) Degradation of oxytetracycline using microporous and mesoporous photocatalyst composites: uniform design to explore factors. J Environ Chem Eng 4:4453–4465. https://doi.org/10.1016/j.jece.2016.10.012

    Article  CAS  Google Scholar 

  83. Ma Y-Q, Yu H, Meng R, Jin X, Zhai Q-Z, Xu J-B (2010) Preparation, characterization of (SBA-15)-TiO2 nanocomposite material and its application to wiping off methylene blue in water body. Asian J Chem 22(9):7410

    CAS  Google Scholar 

  84. Ide Y, Koike Y, Ogawa M (2011) Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates. J Colloid Interface Sci 358(1):245–251. https://doi.org/10.1016/j.jcis.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  85. Kato R, Shimura N, Ogawa M (2007) Controlled photocatalytic ability of titanium dioxide particle by coating with nanoporous silica. Chem Lett 37(1):76–77. https://doi.org/10.1246/cl.2008.76

    Article  CAS  Google Scholar 

  86. Artkla S (2012) Photodecomposition of polyphenols in E. camaldulensis leaves in the presence of hybrid catalyst of titania and MCM-41 synthesized from rice husk silica. Korean J Chem Eng 29(5):555–562. https://doi.org/10.1007/s11814-011-0230-2

    Article  CAS  Google Scholar 

  87. Bhuyan MSUS, Alam AHMA, Chu Y, Seo YC (2017) Biodiesel production potential from littered edible oil fraction using directly synthesized S-TiO2/MCM-41 catalyst in esterification process via non-catalytic subcritical hydrolysis. Energies 10(9):1290

    Article  Google Scholar 

  88. Budhi S, Wu C-M, Zhao D, Koodali RT (2015) Investigation of room temperature synthesis of titanium dioxide nanoclusters dispersed on cubic MCM-48 mesoporous materials. Catalysts 5(3):1603–1621

    Article  CAS  Google Scholar 

  89. Chien S, Huang K, Kuo M (2004) Photocatalytic decomposition of nitric oxide on TiO2 modified MCM-41 catalysts. In: van Steen E, Claeys M, Callanan LH (eds) Studies in surface science and catalysis, vol 154. Elsevier, pp 2876–2883. https://doi.org/10.1016/S0167-2991(04)80567-6

    Chapter  Google Scholar 

  90. De Witte K, Busuioc AM, Meynen V, Mertens M, Bilba N, Van Tendeloo G, Cool P, Vansant EF (2008) Influence of the synthesis parameters of TiO2–SBA-15 materials on the adsorption and photodegradation of rhodamine-6G. Microporous Mesoporous Mater 110(1):100–110. https://doi.org/10.1016/j.micromeso.2007.09.035

    Article  CAS  Google Scholar 

  91. Hassan HMA, Mohamed SK, Ibrahim AA, Betiha MA, El-Sharkawy EA, Mousa AA (2017) A comparative study of the incorporation of TiO2 into MCM-41 nanostructure via different approaches and its effect on the photocatalytic degradation of methylene blue and CO oxidation. React Kinet Mech Catal 120(2):791–807. https://doi.org/10.1007/s11144-016-1124-4

    Article  CAS  Google Scholar 

  92. Hsien Y-H, Chang C-F, Chen Y-H, Cheng S (2001) Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves. Appl Catal B 31(4):241–249. https://doi.org/10.1016/S0926-3373(00)00283-6

    Article  CAS  Google Scholar 

  93. Jardim AAMLF, Bacani R, Camilo FF, Fantini MCA, Martins TS (2016) SBA-15:TiO2 nanocomposites. I. Synthesis with ionic liquids and properties. Microporous Mesoporous Mater 228:37–44. https://doi.org/10.1016/j.micromeso.2016.03.012

    Article  CAS  Google Scholar 

  94. Jardim AAMLF, Bacani R, Gonçalves NS, Fantini MCA, Martins TS (2017) SBA-15:TiO2 nanocomposites: II. Direct and post-synthesis using acetylacetone. Microporous Mesoporous Mater 239:235–243. https://doi.org/10.1016/j.micromeso.2016.10.009

    Article  CAS  Google Scholar 

  95. Liou T-H, Hung L-W, Liu C-L, Zhang T-Y (2018) Direct synthesis of nano titania on highly-ordered mesoporous SBA-15 framework for enhancing adsorption and photocatalytic activity. J Porous Mater 25(5):1337–1347. https://doi.org/10.1007/s10934-017-0544-5

    Article  CAS  Google Scholar 

  96. Nghia NV, Vinh HX, Trung NT, Hung NP (2015) Synthesis and characterisation of nanostructured TiO2/SBA–15 and Ag–TiO2/SBA–15 mesoporous composites. Int J Nanotechnol 12(5–7):475–484. https://doi.org/10.1504/IJNT.2015.067905

    Article  Google Scholar 

  97. Nguyen Dinh MT, Rajbhandari P, Lancelot C, Blanchard P, Lamonier C, Bonne M, Royer S, Dumeignil F, Payen E (2014) Tuning hydrodesulfurization active-Phase dispersion using optimized mesoporous titania-doped silica supports. ChemCatChem 6(1):328–338. https://doi.org/10.1002/cctc.201300521

    Article  CAS  Google Scholar 

  98. Qiao W-T, Zhou G-W, Zhang X-T, Li T-D (2009) Preparation and photocatalytic activity of highly ordered mesoporous TiO2–SBA-15. Mater Sci Eng C 29(4):1498–1502. https://doi.org/10.1016/j.msec.2008.12.010

    Article  CAS  Google Scholar 

  99. Tao H, Hao S, Chang F, Wang L, Zhang Y, Cai X, Zeng J-S-D (2011) Photodegradation of bisphenol A by titania nanoparticles in mesoporous MCM-41. Water, Air Soil Pollut 214(1):491–498. https://doi.org/10.1007/s11270-010-0440-y

    Article  CAS  Google Scholar 

  100. Tomer VK, Duhan S (2015) Nano titania loaded mesoporous silica: preparation and application as high performance humidity sensor. Sens Actuators B Chem 220:192–200. https://doi.org/10.1016/j.snb.2015.05.072

    Article  CAS  Google Scholar 

  101. Tomer VK, Jangra S, Malik R, Duhan S (2015) Effect of in-situ loading of nano titania particles on structural ordering of mesoporous SBA-15 framework. Colloids Surf A 466:160–165. https://doi.org/10.1016/j.colsurfa.2014.11.025

    Article  CAS  Google Scholar 

  102. Wang Y, Gan Y, Whiting R, Lu G (2009) Synthesis of sulfated titania supported on mesoporous silica using direct impregnation and its application in esterification of acetic acid and n-butanol. J Solid State Chem 182(9):2530–2534. https://doi.org/10.1016/j.jssc.2009.07.003

    Article  CAS  Google Scholar 

  103. Dong W, Sun Y, Lee CW, Hua W, Lu X, Shi Y, Zhang S, Chen J, Zhao D (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal−silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129(45):13894–13904. https://doi.org/10.1021/ja073804o

    Article  CAS  PubMed  Google Scholar 

  104. Bandyopadhyay M, Birkner A, van den Berg MWE, Klementiev KV, Schmidt W, Grünert W, Gies H (2005) Synthesis and characterization of mesoporous MCM-48 containing TiO2 nanoparticles. Chem Mater 17(15):3820–3829. https://doi.org/10.1021/cm0484854

    Article  CAS  Google Scholar 

  105. Busuioc AM, Meynen V, Beyers E, Mertens M, Cool P, Bilba N, Vansant EF (2006) Structural features and photocatalytic behaviour of titania deposited within the pores of SBA-15. Appl Catal A 312:153–164. https://doi.org/10.1016/j.apcata.2006.06.043

    Article  CAS  Google Scholar 

  106. Jiang C, Lee KY, Parlett CMA, Bayazit MK, Lau CC, Ruan Q, Moniz SJA, Lee AF, Tang J (2016) Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production. Appl Catal A 521:133–139. https://doi.org/10.1016/j.apcata.2015.12.004

    Article  CAS  Google Scholar 

  107. Li Y, Li N, Tu J, Li X, Wang B, Chi Y, Liu D, Yang D (2011) TiO2 supported on rod-like mesoporous silica SBA-15: preparation, characterization and photocatalytic behaviour. Mater Res Bull 46(12):2317–2322. https://doi.org/10.1016/j.materresbull.2011.08.044

    Article  CAS  Google Scholar 

  108. Lihitkar NB, Abyaneh MK, Samuel V, Pasricha R, Gosavi SW, Kulkarni SK (2007) Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41. J Colloid Interface Sci 314(1):310–316. https://doi.org/10.1016/j.jcis.2007.05.069

    Article  CAS  PubMed  Google Scholar 

  109. de Souzae SilvaPastorelloStraussMaronezeSigoliGushikemMazali JMMMCMFAYIO (2012) Size controlled synthesis of highly dispersed anatase/rutile nanoparticles with photocatalytic activity toward salicylic acid degradation. RSC Adv 2(12):5390–5397. https://doi.org/10.1039/C2RA20453C

    Article  Google Scholar 

  110. Shindo T, Koizumi N, Hatakeyama K, Ikeuchi T (2011) Post-synthesis of TiO2 dispersed inside the pore channels of SBA-15 and its photocatalytic activity for the degradation of methylene blue. Int J Soc Mater Eng Resour 18(1):11–17. https://doi.org/10.5188/ijsmer.18.11

    Article  CAS  Google Scholar 

  111. Vibulyaseak K, Bureekaew S, Ogawa M (2017) Size-controlled synthesis of anatase in a mesoporous silica, SBA-15. Langmuir 33(47):13598–13603. https://doi.org/10.1021/acs.langmuir.7b03252

    Article  CAS  PubMed  Google Scholar 

  112. Yang J, Zhang J, Zhu L, Chen S, Zhang Y, Tang Y, Zhu Y, Li Y (2006) Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity. J Hazard Mater 137(2):952–958. https://doi.org/10.1016/j.jhazmat.2006.03.017

    Article  CAS  PubMed  Google Scholar 

  113. Zhang S, Jiang D, Tang T, Li J, Xu Y, Shen W, Xu J, Deng F (2010) TiO2/SBA-15 photocatalysts synthesized through the surface acidolysis of Ti(OnBu)4 on carboxyl-modified SBA-15. Catal Today 158(3):329–335. https://doi.org/10.1016/j.cattod.2010.04.004

    Article  CAS  Google Scholar 

  114. Zhao L, Yu J (2006) Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template. J Colloid Interface Sci 304(1):84–91. https://doi.org/10.1016/j.jcis.2006.08.042

    Article  CAS  PubMed  Google Scholar 

  115. Zhu S, Zhang D, Zhang X, Zhang L, Ma X, Zhang Y, Cai M (2009) Sonochemical incorporation of nanosized TiO2 inside mesoporous silica with high photocatalytic performance. Microporous Mesoporous Mater 126(1):20–25. https://doi.org/10.1016/j.micromeso.2009.05.010

    Article  CAS  Google Scholar 

  116. Zukerman R, Vradman L, Titelman L, Zeiri L, Perkas N, Gedanken A, Landau MV, Herskowitz M (2010) Effect of SBA-15 microporosity on the inserted TiO2 crystal size determined by Raman spectroscopy. Mater Chem Phys 122(1):53–59. https://doi.org/10.1016/j.matchemphys.2010.02.065

    Article  CAS  Google Scholar 

  117. Chang F, Wang G, Xie Y, Zhang M, Zhang J, Yang H-J, Hu X (2013) Synthesis of TiO2 nanoparticles on mesoporous aluminosilicate Al-SBA-15 in supercritical CO2 for photocatalytic decolorization of methylene blue. Ceram Int 39(4):3823–3829. https://doi.org/10.1016/j.ceramint.2012.10.223

    Article  CAS  Google Scholar 

  118. Liu C, Lin X, Li Y, Xu P, Li M, Chen F (2016) Enhanced photocatalytic performance of mesoporous TiO2 coated SBA-15 nanocomposites fabricated through a novel approach: supercritical deposition aided by liquid-crystal template. Mater Res Bull 75:25–34. https://doi.org/10.1016/j.materresbull.2015.10.052

    Article  CAS  Google Scholar 

  119. Sun D, Liu Z, He J, Han B, Zhang J, Huang Y (2005) Surface sol–gel modification of mesoporous silica molecular sieve SBA-15 with TiO2 in supercritical CO2. Microporous Mesoporous Mater 80(1):165–171. https://doi.org/10.1016/j.micromeso.2004.12.010

    Article  CAS  Google Scholar 

  120. Mehta A, Mishra A, Sharma M, Singh S, Basu S (2016) Effect of silica/titania ratio on enhanced photooxidation of industrial hazardous materials by microwave treated mesoporous SBA-15/TiO2 nanocomposites. J Nanopart Res 18(7):209. https://doi.org/10.1007/s11051-016-3523-x

    Article  CAS  Google Scholar 

  121. Reddy EP, Davydov L, Smirniotis P (2003) TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support. Appl Catal B 42(1):1–11. https://doi.org/10.1016/S0926-3373(02)00192-3

    Article  CAS  Google Scholar 

  122. Ren X, Miao G, Xiao Z, Ye F, Li Z, Wang H, Xiao J (2016) Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions. Fuel 174:118–125. https://doi.org/10.1016/j.fuel.2016.01.093

    Article  CAS  Google Scholar 

  123. Besançon M, Michelin L, Josien L, Vidal L, Assaker K, Bonne M, Lebeau B, Blin J-L (2016) Influence of the porous texture of SBA-15 mesoporous silica on the anatase formation in TiO2–SiO2 nanocomposites. New J Chem 40(5):4386–4397. https://doi.org/10.1039/C5NJ02859K

    Article  CAS  Google Scholar 

  124. Dong Y, Fei X, Zhang H, Yu L (2015) Effects of calcination process on photocatalytic activity of TiO2/MCM-41 photocatalyst. J Adv Oxid Technol 18(2):322–330. https://doi.org/10.1515/jaots-2015-0219

    Article  CAS  Google Scholar 

  125. Huang X, Shi W, Yuan J, Shi J, Jiang Z, Shangguan W (2011) Synergetic catalytic performance of TiO2/MCM-41 for ozone-assisted photocatalytic degradation of gaseous acetaldehyde. Environ Technol 32(3–4):307–316. https://doi.org/10.1080/09593330.2010.497774

    Article  CAS  PubMed  Google Scholar 

  126. Lachheb H, Ahmed O, Houas A, Nogier JP (2011) Photocatalytic activity of TiO2–SBA-15 under UV and visible light. J Photochem Photobiol A 226(1):1–8. https://doi.org/10.1016/j.jphotochem.2011.09.017

    Article  CAS  Google Scholar 

  127. Li X, Zheng W, Pan H, Yu Y, Chen L, Wu P (2013) Pt nanoparticles supported on highly dispersed TiO2 coated on SBA-15 as an efficient and recyclable catalyst for liquid-phase hydrogenation. J Catal 300:9–19. https://doi.org/10.1016/j.jcat.2012.12.007

    Article  CAS  Google Scholar 

  128. Nguyen-Phan T-D, Lee CY, Chung JS, Shin EW (2008) Adsorption of benzene onto mesoporous silicates modified by titanium. Res Chem Intermed 34(8):743–753. https://doi.org/10.1007/BF03036933

    Article  CAS  Google Scholar 

  129. Sadjadi MS, Farhadyar N, Zare K (2009) Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices Microstruct 46(1):266–271. https://doi.org/10.1016/j.spmi.2008.12.024

    Article  CAS  Google Scholar 

  130. Wu Q, Li S (2011) Synthesis of TiO2/Al-MCM-41 composites with coal-measure Kaolin and performance in its photocatalysis. Mater Sci Appl 2:14–19. https://doi.org/10.4236/msa.2011.21003

    Article  CAS  Google Scholar 

  131. Zhao C, Liu L, Zhang Q, Wang J, Li Y (2012) Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce–TiO2/SBA-15 composites. Catal Sci Technol 2(12):2558–2568. https://doi.org/10.1039/C2CY20346D

    Article  CAS  Google Scholar 

  132. Zhao S, Su D, Che J, Jiang B, Orlov A (2011) Photocatalytic properties of TiO2 supported on SBA-15 mesoporous materials with large pores and short channels. Mater Lett 65(23):3354–3357. https://doi.org/10.1016/j.matlet.2011.07.053

    Article  CAS  Google Scholar 

  133. Shiba K, Sato S, Matsushita T, Ogawa M (2013) Preparation of nanoporous titania spherical nanoparticles. J Solid State Chem 199:317–325. https://doi.org/10.1016/j.jssc.2012.12.024

    Article  CAS  Google Scholar 

  134. Vibulyaseak K, Chiou W-A, Ogawa M (2019) Preferential immobilization of size-controlled anatase nanoparticles in mesopores. Chem Commun 55(58):8442–8445

    Article  CAS  Google Scholar 

  135. Vibulyaseak K, Chiou W-A, Ogawa M (2019) Electron microscopy study of TiO2 nanoparticle in mesoporous silica. Microsc Microanal 25(S2):2214–2215

    Article  Google Scholar 

  136. Vibulyaseak K, Ohtani B, Ogawa M (2020) Crystallization of well-defined anatase nanoparticles in SBA-15 for the photocatalytic decomposition of acetic acid. RSC Adv 10(54):32350–32356

    Article  CAS  PubMed  Google Scholar 

  137. Vibulyaseak K, Kudo A, Ogawa M (2020) Template synthesis of well-defined rutile nanoparticles by solid-state reaction at room temperature. Inorg Chem 59(12):7934–7938

    Article  CAS  PubMed  Google Scholar 

  138. Paengjun N, Vibulyaseak K, Ogawa M (2021) Heterostructural transformation of mesoporous silica–titania hybrids. Sci Rep 11(1):1–12

    Article  Google Scholar 

  139. Vibulyaseak K, Paengjun N, Kudo A, Ogawa M (2022) Well-defined single and bundled rutile nanorods in mesoporous silica for efficient hydrogen evolution Photocatalysis. ACS Appl Nano Mater 5(12):18004–18013

    Article  CAS  Google Scholar 

  140. Hwang K-J, Cho DW, Lee J-W, Im C (2012) Preparation of nanoporous TiO2 electrodes using different mesostructured silica templates and improvement of the photovoltaic properties of DSSCs. New J Chem 36(10):2094–2100. https://doi.org/10.1039/C2NJ40547D

    Article  CAS  Google Scholar 

  141. Hwang KJ, Yoo SJ, Kim SS, Kim JM, Shim WG, Kim SI, Lee JW (2008) Photovoltaic performance of nanoporous TiO2 replicas synthesized from mesoporous materials for dye-sensitized solar cells. J Nanosci Nanotechnol 8(10):4976–4981. https://doi.org/10.1166/jnn.2008.1199

    Article  CAS  PubMed  Google Scholar 

  142. Kim SS, Lee HI, Shon JK, Hur JY, Kang MS, Park SS, Kong SS, Yu JA, Seo M, Li D, Thakur SS, Kim JM (2007) Preparation of highly ordered mesoporous TiO2 materials with crystalline framework from different Mesostructured silica templates via Nanoreplication. Chem Lett 37(2):140–141. https://doi.org/10.1246/cl.2008.140

    Article  Google Scholar 

  143. Paengjun N, Ogawa M (2021) Formation of BiOX (X=Cl and Br) in a mesoporous silica by the infiltration of Bi salts and the subsequent reaction with HX vapor. Chem Commun 57(66):8139–8142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Distinguished Professor Grant (Grant number N41A640072) from the National Research Council of Thailand (NRCT). This work was also supported by a Moonshot project (Grant number JPNP18016) from the New Energy and Industrial Technology Development Organization (NEDO), Japan, and joint research program of the Institute of Materials and Systems for Sustainability, Nagoya University.

Funding

National Research Council of Thailand,Grant number N41A640072), Makoto Ogawa, Institute of Materials and Systems for Sustainability,Nagoya University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vejchakul, K., Ogawa, M. Precise Design of Titanium Dioxide Nanoparticles Using Nanostructured Solids as Template. Top Catal 66, 1649–1661 (2023). https://doi.org/10.1007/s11244-023-01845-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01845-0

Keywords

Navigation