Skip to main content
Log in

Effect of Microwave Drying of Alumina Support on Properties of Cu/Al2O3 Catalyst for Synthesis of Dimethyl Ether via CO2 Hydrogenation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) hydrogenation is an alternative catalytic reaction for the conversion of CO2 into methanol and dimethyl ether (DME). Alumina is widely used as a catalyst in CO2 hydrogenation. Drying of the porous support is an effective process, which can directly affect the structural characteristics and performance of the catalyst. This work investigated the effect of microwave drying on the properties of an alumina support and a Cu/Al2O3 catalyst. Microwave drying of the support at 600 and 1000 W shortened the drying time by 86 and 92%, respectively, compared to hot air drying at 100 °C. Microwave drying could enhance the distribution of the alumina particles, resulting in a larger surface area and pore volume of the support. In contrast, hot air drying caused alumina particle aggregation that led to a small surface area and pore volume of the support. The Cu/Al2O3 catalyst, for which the support was microwave-dried at 1000 W (Cu/Al2O3-MW1000), had the greatest copper distribution, BET surface area (229.5 m2/g), pore volume (0.39 m3/g) and strong acidic site (1.25 mmol NH3/g Cu). These characteristics of catalyst led to the presenting of the highest CO2 conversion, DME selectivity, and DME space time yield during CO2 hydrogenation. A catalyst utilizing the support prepared by microwave drying at 1000 W exhibited the highest average CO2 conversion, DME selectivity and space time yield of DME of 30.67%, 9.99% and 156.5 gDME/kgcat h, respectively at a reaction temperature of 260 °C for 4 h. In addition, the stability of Cu/Al2O3-MW1000 catalyst was excellent over a 24 h reaction period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information file.

References

  1. Chiang CL, Lin KS (2017) Preparation and characterization of CuO-Al2O3 catalyst for dimethyl ether production via methanol dehydration. Int J Hydrogen Energy 42:23526–23538

    Article  CAS  Google Scholar 

  2. Ayodele OB, Tasfy SFH, Zabidi NAM, Uemura Y (2017) Co-synthesis of methanol and methyl formate from CO2 hydrogenation over oxalate ligand functionalized ZSM-5 supported Cu/ZnO catalyst. J CO2 Util 17:273–283

    Article  CAS  Google Scholar 

  3. Dong X, Li F, Zhao N, Tan Y, Wang J, Xiao F (2017) A study on the order of calcination and liquid reduction over Cu-based catalyst for synthesis of methanol from CO2/H2. Catal Lett 147:1235–1242

    Article  CAS  Google Scholar 

  4. Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87(7):1014–1030

    Article  CAS  Google Scholar 

  5. Niamnuy C, Prapaitrakul P, Panchan N, Seubsai A, Witoon T, Devahastin S, Chareonpanich M (2020) Synthesis of dimethyl ether via CO2 hydrogenation: effect of the drying technique of alumina on properties and performance of alumina-supported copper catalysts. ACS Omega 5:2334–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaikwad R, Bansode A, Urakawa A (2016) High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J Catal 343:127–132

    Article  CAS  Google Scholar 

  7. Chiang CL, Lin KS (2017) Preparation and characterization of CuO Al2O3 catalyst for dimethyl ether production via methanol dehydration. Int J Hydrogen Energy 42(37):23526–23538

    Article  CAS  Google Scholar 

  8. Kanjanasoontorn N, Permsirivanich T, Numpilai T, Witoon T, Chanlek N, Niamlaem M, Warakulwit C, Limtrakul J (2016) Structure–activity relationships of hierarchical meso–macroporous alumina supported copper catalysts for CO2 hydrogenation: effects of calcination temperature of alumina support. Catal Lett 146(10):1943–1955

    Article  CAS  Google Scholar 

  9. Li W, Lu P, Xu D, Tao K (2017) CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid. Korean J Chem Eng 35:110–117

    Article  Google Scholar 

  10. Kusama H, Bando KK, Okabe K, Arakawa H (2000) Effect of metal loading on CO2 hydrogenation reactivity over Rh/SiO2 catalysts. Appl Catal A Gen 197:255–268

    Article  CAS  Google Scholar 

  11. Kiatphuengporn S, Donphai W, Jantaratana P, Yigit N, Föttinger K, Rupprechter G, Chareonpanich M (2017) Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactor. J Clean Prod 142:1222–1233

    Article  CAS  Google Scholar 

  12. Bahruji H, Esquius JR, Bowker M, Hutchings G, Armstrong RD, Jones W (2018) Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Top Catal 61(3):144–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tariq A, Esquius JR, Davies TE, Bowker M, Taylor SH, Hutchings GJ (2021) Combination of Cu/ZnO methanol synthesis catalysts and ZSM-5 zeolites to produce oxygenates from CO2 and H2. Topic Cat 64:965–973

    Article  CAS  Google Scholar 

  14. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. Chem Mater 19(14):3393–3398

    Article  CAS  Google Scholar 

  15. Witoon T, Chareonpanich M, Limtrakul J (2008) Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template. Mater Lett 62(10–11):1476–1479

    Article  CAS  Google Scholar 

  16. Pan Y, He S, Gong L, Cheng X, Li C, Li Z, Liu Z, Zhang H (2017) Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater Des 113:246–253

    Article  CAS  Google Scholar 

  17. Neves GM, Lenza RF, Vasconcelos WL (2002) Evaluation of the influence of microwaves in the structure of silica gels. Mater Res 5(4):447–451

    Article  CAS  Google Scholar 

  18. Qi L, Xu MX, Tian YM, Zhao JW (2006) Preparation of alumina-doped yttria-stabilized zirconia nanopowders by microwave-assisted peroxyl-complex coprecipitation. Trans Nonferrous Met Soc China 16:s426–s430

    Article  Google Scholar 

  19. AOAC International (2000) AOAC official methods of analysis, 17th edn. Association of Analytical Communities, Washington DC

    Google Scholar 

  20. An S, Manivannan S, Viji M, Shim MS, Hwang BH, Kim K (2021) Surface roughness effects of Pd-loaded magnetic mmicrospheres on reduction kinetics of nitroaromatics. Bull Korean Chem Soc 42(6):894–899

    Article  CAS  Google Scholar 

  21. Annie D, Chandramouli V, Anthonysamy S, Ghosh C, Divakar R (2017) Freeze drying vs microwave drying–methods for synthesis of sinteractive thoria powders. J Nucl Mater 484:51–58

    Article  CAS  Google Scholar 

  22. Zakeri M, Samimi A, Afarani MS, Salehirad A (2016) Effects of porosity and pore size distribution on mechanical strength reliability of industrial-scale catalyst during preparation and catalytic test steps. Part Sci Technol 36(1):96–103

    Article  Google Scholar 

  23. Witoon T, Bumrungsalee S, Chareonpanich M, Limtrakul J (2015) Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation. Energy Convers Manag 103:886–894

    Article  CAS  Google Scholar 

  24. López-Suárez FE, Bueno-López A, Illán-Gómez MJ (2008) Cu/Al2O3 catalysts for soot oxidation: copper loading effect. Appl Catal B Environ 84(3–4):651–658

    Article  Google Scholar 

  25. Jia CG, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F (2013) Ni/Al2O3 catalysts for CO methanation: effect of Al2O3 supports calcined at different temperatures. J Energy Chem 22(6):919–927

    Article  Google Scholar 

  26. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  27. Dumas JM, Geron C, Kribii A, Barbier J (1989) Preparation of supported copper catalysts: II. Reduction of copper/alumina catalysts. Appl catal 47(1):L9–L15

    Article  CAS  Google Scholar 

  28. Yurdakal S, Garlisi C, Özcan L, Bellardita M, Palmisano G (2019) (Photo)catalyst characterization techniques. Heterogeneous photocatalysis. Elsevier, Amsterdam, pp 87–152

    Chapter  Google Scholar 

  29. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK (2008) Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process. Ceram Int 34(8):2059–2066

    Article  CAS  Google Scholar 

  30. Monteiro CAA, Costa D, Zotin JL, Cardoso D (2015) Effect of metal–acid site balance on hydroconversion of decalin over Pt/Beta zeolite bifunctional catalysts. Fuel 160:671–679

    Article  Google Scholar 

  31. Mota N, Millán Ordoñez E, Pawelec B, Fierro JLG, Navarro RM (2021) Direct synthesis of dimethyl ether from CO2: recent advances in bifunctional/hybrid catalytic systems. Catalyst 11(4):411

    Article  CAS  Google Scholar 

  32. Ghorbanpour A, Rimer JD, Grabow LC (2016) Computational assessment of the dominant factors governing the mechanism of methanol dehydration over H-ZSM-5 with heterogeneous aluminum distribution. ACS Catal 6(4):2287–2298

    Article  CAS  Google Scholar 

  33. Wang Z, Wu W, Bian X, Wu Y (2016) Synthesis and characterization of amorphous Al2O3 and γ- Al2O3 by spray pyrolysis. Green Proc Synth 5(3):305–310

    Article  CAS  Google Scholar 

  34. Reddy DV, Narasaiah TB (2018) Synthesis and characterization of copper oxide (CuO) nanoparticles. Int J Sci Res Dev 6(6):627–629

    CAS  Google Scholar 

  35. Wang ZJ, Liu Y, Shi P, Liu CJ, Liu Y (2009) Al-MCM-41 supported palladium catalyst for methane combustion: effect of the preparation methodologies. Appl Catal B Environ 90(3–4):570–577

    Article  CAS  Google Scholar 

  36. Hu YH (2009) Solid-solution catalysts for CO2 reforming of methane. Catal Today 148(3–4):206–211

    Article  CAS  Google Scholar 

  37. Takeguchi T, Yanagisawa KI, Inui T, Inoue M (1999) Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu–Zn–Ga and solid acids. Appl Catal A Gen 192(2):201–209

    Article  Google Scholar 

  38. Joo OS, Jung KD, Han SH (2002) Modification of H-ZSM-5 and Y-alumina with formaldehyde and its application to the synthesis of dimethyl ether from syn-gas. Bull Korean Chem Soc 23(8):1103–1105

    Article  CAS  Google Scholar 

  39. Zhu X, Wen G, Liu H, Han S, Chen S, Kong Q, Feng W (2019) One-step hydrothermal synthesis and characterization of Cu-doped TiO2 nanoparticles/nanobucks/nanorods with enhanced photocatalytic performance under simulated solar light. J Mater Sci Mater Electron 30(14):13826–13834

    Article  CAS  Google Scholar 

  40. Kattel S, Yan B, Yang Y, Chen JG, Liu P (2016) Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. ACS J 138(38):12440–12450

    CAS  Google Scholar 

  41. Keshavarz AR, Rezaei M, Yaripour F (2011) Preparation of nanocrystalline γ-Al2O3 catalyst using different procedures for methanol dehydration to dimethyl ether. J Nat Gas Chem 20(3):334–338

    Article  CAS  Google Scholar 

  42. Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc 139(29):9739–9754

    Article  CAS  PubMed  Google Scholar 

  43. García-Trenco A, Martínez A (2015) A rational strategy for preparing Cu–ZnO/H-ZSM-5 hybrid catalysts with enhanced stability during the one-step conversion of syngas to dimethyl ether (DME). Appl Catal A Gen 493:40–49

    Article  Google Scholar 

  44. Bansode A, Tidona B, von Rohr PR, Urakawa A (2013) Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure. Catal Sci Technol 3:767–778

    Article  CAS  Google Scholar 

  45. Bonura G, Cordaro M, Spadaro L, Cannilla C, Arena F, Frusteri F (2013) Hybrid Cu-ZnO-ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation. Appl Catal B Environ 140–141:16–24

    Article  Google Scholar 

  46. Liu QZZ, Ji HB, Su TM (2013) Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system. Ind Eng Chem Res 52:16648–16655

    Article  CAS  Google Scholar 

  47. Zhou X, Su T, Jiang Y, Qin Z, Ji H, Guo Z (2016) CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem Eng Sci 153:10–20

    Article  CAS  Google Scholar 

  48. Suwannapichat Y, Numpilai T, Chanlek N, Faungnawakij K, Chareonpanich M, Limtrakul J, Witton T (2018) Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalyst containing a Cu-ZnO-ZrO2 catalyst admixed with WOx/Al2O3 catalysts: effects of pore size of Al2O3 support and W loading content. Energy Convers Manag 159:20–29

    Article  CAS  Google Scholar 

  49. Ren S, Li S, Klinghoffer N, Yu M, Liang X (2019) Effects of mixing methods of bifunctional catalysts on catalyst stability of DME synthesis via CO2 hydrogenation. Carbon Resour Convers 2:85–94

    Article  CAS  Google Scholar 

  50. Fang X, Jia H, Zhang B, Li Y, Wang Y, Song Y, Du T, Liu L (2021) A novel in situ grown Cu-ZnO-ZrO2/HZSM-5 hybrid catalyst for CO2 hydrogenation to liquid fuels of methanol and DME. J Environ Chem Eng 9:105299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to the Program Management Unit for Human Resources & Institutional Development, Research and Innovation [Grant Number B05F630097] and the Faculty of Engineering, Kasetsart University, Bangkok, Thailand for their financial support of this study.

Author information

Authors and Affiliations

Authors

Contributions

NN: investigation, writing-original draft preparation, writing-reviewing and editing. PC: investigation, writing-reviewing and editing. WS: visualization, writing-reviewing and editing. WD: visualization, writing-reviewing and editing. AS: visualization, writing-reviewing and editing. CN: conceptualization, methodology, writing-original draft preparation, writing-reviewing and editing.

Corresponding author

Correspondence to Chalida Niamnuy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1204 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nintao, N., Chadawong, P., Sangthong, W. et al. Effect of Microwave Drying of Alumina Support on Properties of Cu/Al2O3 Catalyst for Synthesis of Dimethyl Ether via CO2 Hydrogenation. Top Catal 66, 1478–1491 (2023). https://doi.org/10.1007/s11244-023-01844-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01844-1

Keywords

Navigation