Skip to main content
Log in

Insights into Acetic Acid Binding and Ketene Formation on Anatase TiO2(101)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

This article has been updated

Abstract

Understanding the adsorption and reactivity of carboxylic acids on oxide surfaces is of great interest in catalysis for biomass upgrading via ketonization, a carbon–carbon coupling reaction. Herein, we investigate the adsorption and reaction of acetic acid on anatase TiO2(101) using scanning tunneling microscopy, infrared spectroscopy, temperature programmed reaction, and density functional theory calculations. We demonstrate the adsorption of acetic acid can form two intermediates: (1) dissociated, bidentate acetate with an associated bridging hydroxyl, and (2) molecular, monodentate acetic acid. The coexistence of ordered phases with increasing monolayer (ML) saturation coverages consisting of (1) pure acetate (0.5 ML), (2) mixed acetate/acetic acid (0.67 ML), (3) mixed acetate/acetic acid (1.0 ML) and (4) pure acetic acid demonstrates similar energetics for both acetate and acetic acid species. Under ultra-high vacuum conditions, the presence of both monodentate acetic acid and bidentate acetate was observed below room temperature, while solely bidentate acetate was observed up to 575 K. The deprotonation of acetic acid produces water at 280 K, while the thermal decomposition of bidentate acetate produces ketene and acetic acid at 645 K. This model study provides detailed insight into the stability and reactivity of carboxylic acid surface-bound intermediates, which could participate during ketonization reactions for biomass upgrading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All experimental and theoretical data are provided in the manuscript and the supporting information files.

Change history

  • 29 September 2023

    ESM has been updated

References

  1. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473. https://doi.org/10.1021/cs400501h

    Article  CAS  Google Scholar 

  2. Boekaerts B, Sels BF (2021) Catalytic advancements in carboxylic acid ketonization and its perspectives on biomass valorisation. Appl Catal B Environ 283:119607. https://doi.org/10.1016/j.apcatb.2020.119607

    Article  CAS  Google Scholar 

  3. Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547. https://doi.org/10.1039/c3gc41492b

    Article  CAS  Google Scholar 

  4. Pacchioni G (2014) Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: a DFT perspective. ACS Catal 4:2874–2888. https://doi.org/10.1021/cs500791w

    Article  CAS  Google Scholar 

  5. Hasan MA, Zaki MI, Pasupulety L (2003) Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation. Appl Catal A Gen 243:81–92. https://doi.org/10.1016/S0926-860X(02)00539-2

    Article  CAS  Google Scholar 

  6. Pestman R, van Duijne A, Pieterse JAZ, Ponec V (1995) The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions. J Mol Catal A Chem 103:175–180. https://doi.org/10.1016/1381-1169(95)00138-7

    Article  CAS  Google Scholar 

  7. Pestman R, Koster RM, van Duijne A et al (1997) Reactions of carboxylic acids on oxides. J Catal 168:265–272. https://doi.org/10.1006/jcat.1997.1624

    Article  CAS  Google Scholar 

  8. Pham TN, Shi D, Resasco DE (2014) Kinetics and mechanism of ketonization of acetic acid on Ru/TiO2 catalyst. Top Catal 57:706–714. https://doi.org/10.1007/s11244-013-0227-7

    Article  CAS  Google Scholar 

  9. Wang S, Iglesia E (2017) Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. J Catal 345:183–206. https://doi.org/10.1016/j.jcat.2016.11.006

    Article  CAS  Google Scholar 

  10. Kim KS, Barteau MA (1990) Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2(001) single-crystal surfaces. J Catal 125:353–375. https://doi.org/10.1016/0021-9517(90)90309-8

    Article  CAS  Google Scholar 

  11. Tanner RE, Liang Y, Altman EI (2002) Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2(001). Surf Sci 506:251–271. https://doi.org/10.1016/S0039-6028(02)01388-2

    Article  CAS  Google Scholar 

  12. Martinez R, Huff MCC, Barteau MAA (2004) Ketonization of acetic acid on titania-functionalized silica monoliths. J Catal 222:404–409. https://doi.org/10.1016/j.jcat.2003.12.002

    Article  CAS  Google Scholar 

  13. Pham TN, Shi D, Resasco DE (2014) Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. J Catal 314:149–158. https://doi.org/10.1016/j.jcat.2014.04.008

    Article  CAS  Google Scholar 

  14. White JM, Szanyi J, Henderson MA (2004) Thermal chemistry of trimethyl acetic acid on TiO2(110). J Phys Chem B 108:3592–3602. https://doi.org/10.1021/jp036713w

    Article  CAS  Google Scholar 

  15. Grinter DC, Nicotra M, Thornton G (2012) Acetic acid adsorption on anatase TiO2(101). J Phys Chem C 116:11643–11651. https://doi.org/10.1021/jp303514g

    Article  CAS  Google Scholar 

  16. Petrik NG, Wang Y, Wen B et al (2021) Conversion of formic acid on single- and nano-crystalline anatase TiO2(101). J Phys Chem C 125:7686–7700. https://doi.org/10.1021/acs.jpcc.1c00571

    Article  CAS  Google Scholar 

  17. Wang Y, Wen B, Dahal A et al (2020) Binding of formic acid on anatase TiO2(101). J Phys Chem C 124:20228–20239. https://doi.org/10.1021/acs.jpcc.0c06031

    Article  CAS  Google Scholar 

  18. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229. https://doi.org/10.1016/s0167-5729(02)00100-0

    Article  CAS  Google Scholar 

  19. Ma R, O’Connor CR, Collinge G et al (2023) The role of surface hydroxyls in the mobility of carboxylates on surfaces: dynamics of acetate on anatase TiO2(101). J Phys Chem Lett 14:2542–2550. https://doi.org/10.1021/acs.jpclett.3c00175

    Article  CAS  PubMed  Google Scholar 

  20. Murphy DM, Koop T (2005) Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q J R Meteorol Soc 131:1539–1565. https://doi.org/10.1256/qj.04.94

    Article  Google Scholar 

  21. Smith RS, Matthiesen J, Knox J, Kay BD (2011) Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water. J Phys Chem A 115:5908–5917. https://doi.org/10.1021/jp110297q

    Article  CAS  PubMed  Google Scholar 

  22. Smith RS, Kay BD (2019) Desorption kinetics of carbon dioxide from a graphene-covered Pt(111) surface. J Phys Chem A 123:3248–3254. https://doi.org/10.1021/acs.jpca.9b00674

    Article  CAS  PubMed  Google Scholar 

  23. Setvín M, Daniel B, Mansfeldova V et al (2014) Surface preparation of TiO2 anatase (101): pitfalls and how to avoid them. Surf Sci 626:61–67. https://doi.org/10.1016/j.susc.2014.04.001

    Article  CAS  Google Scholar 

  24. Herman GS, Dohnálek Z, Ruzycki N, Diebold U (2003) Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J Phys Chem B 107:2788–2795. https://doi.org/10.1021/jp0275544

    Article  CAS  Google Scholar 

  25. Scoles G (1988) Atomic and molecular beam methods:, vol 1. Oxford University Press, New York

    Google Scholar 

  26. Ramsey NF (1985) Molecular beams. Oxford University Press, Oxford

    Google Scholar 

  27. Xu B, Madix RJ, Friend CM (2010) Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J Am Chem Soc 132:16571–16580. https://doi.org/10.1021/ja106706v

    Article  CAS  PubMed  Google Scholar 

  28. O’Connor CR, Hiebel F, Chen W et al (2018) Identifying key descriptors in surface binding: interplay of surface anchoring and intermolecular interactions for carboxylates on Au(110). Chem Sci 9:3759–3766. https://doi.org/10.1039/C7SC05313D

    Article  PubMed  PubMed Central  Google Scholar 

  29. Możejko P (2007) Calculations of electron impact ionization cross section for simple biomolecules: formic and acetic acids. Eur Phys J Spec Top 144:233–237. https://doi.org/10.1140/epjst/e2007-00133-8

    Article  Google Scholar 

  30. Bull JN, Harland PW (2008) Absolute electron impact ionization cross-sections and polarisability volumes for C2 to C4 aldehydes, C4 and C6 symmetric ethers and C3 to C6 ketones. Int J Mass Spectrom 273:53–57. https://doi.org/10.1016/j.ijms.2008.03.003

    Article  CAS  Google Scholar 

  31. Kim Y-KK, Irikura KK, Rudd ME, et al (2004) Electron-impact cross sections for ionization and excitation database. NIST Stand. Ref. Database 107

  32. Krems M, Zirbel J, Thomason M, DuBois RD (2005) Channel electron multiplier and channelplate efficiencies for detecting positive ions. Rev Sci Instrum. https://doi.org/10.1063/1.2052052

    Article  Google Scholar 

  33. Ko EI, Benziger JB, Madix RJ (1980) Reactions of methanol on W(100) and W(100)-(5×1)C surfaces. J Catal 62:264–274. https://doi.org/10.1016/0021-9517(80)90454-6

    Article  CAS  Google Scholar 

  34. Straub HC, Renault P, Lindsay BG et al (1996) Absolute partial cross sections for electron-impact ionization of H2, N2, and O2 from threshold to 1000 eV. Phys Rev A 54:2146–2153. https://doi.org/10.1103/PhysRevA.54.2146

    Article  CAS  PubMed  Google Scholar 

  35. Chabal YJ (1988) Surface infrared spectroscopy. Surf Sci Rep 8:211–357. https://doi.org/10.1016/0167-5729(88)90011-8

    Article  CAS  Google Scholar 

  36. Chabal YJ (1987) Vibrational properties at semiconductor surfaces and interfaces. In: Le Lay G, Derrien J, Boccara N (eds) Semiconductor interfaces: formation and properties. Springer, Berlin, Heidelberg

    Google Scholar 

  37. Kimmel GA, Baer M, Petrik NG et al (2012) Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): anisotropy and the hydrogen-bonding network. J Phys Chem Lett 3:778–784. https://doi.org/10.1021/jz3001079

    Article  CAS  PubMed  Google Scholar 

  38. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4:15–25. https://doi.org/10.1002/wcms.1159

    Article  CAS  Google Scholar 

  39. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  40. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54:1703–1710. https://doi.org/10.1103/PhysRevB.54.1703

    Article  CAS  Google Scholar 

  41. VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys. https://doi.org/10.1063/1.2770708

    Article  PubMed  Google Scholar 

  42. Dudarev S, Botton G (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B—Condens Matter Mater Phys 57:1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  43. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions: II—overlap populations, bond orders, and covalent bond energies. J Chem Phys 23:1841–1846. https://doi.org/10.1063/1.1740589

    Article  CAS  Google Scholar 

  44. Doudin N, Collinge G, Gurunathan PK et al (2021) Creating self-assembled arrays of mono-oxo (MoO3)1 species on TiO2(101) via deposition and decomposition of (MoO3)n oligomers. Proc Natl Acad Sci 118:e2017703118. https://doi.org/10.1073/pnas.2017703118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  46. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. Doi 10(1063/1):3382344

    Google Scholar 

  47. Doudin N, Collinge G, Persaud RR et al (2021) Binding and stability of MgO monomers on anatase TiO2(101). J Chem Phys 154:204703. https://doi.org/10.1063/5.0047521

    Article  CAS  PubMed  Google Scholar 

  48. Spreafico C, Schiffmann F, VandeVondele J (2014) Structure and mobility of acetic acid at the anatase (101)/acetonitrile interface. J Phys Chem C 118:6251–6260. https://doi.org/10.1021/jp4117563

    Article  CAS  Google Scholar 

  49. He Y, Tilocca A, Dulub O et al (2009) Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat Mater 8:585–589. https://doi.org/10.1038/nmat2466

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Z, Li Z, Zou Z (2012) Structure and properties of water on the anatase TiO2(101) surface: from single-molecule adsorption to interface formation. J Phys Chem C 116:11054–11061. https://doi.org/10.1021/jp301468c

    Article  CAS  Google Scholar 

  51. Petersen T, Klüner T (2020) Water adsorption on ideal anatase-TiO2(101)—an embedded cluster model for accurate adsorption energetics and excited state properties. Zeitschrift für Phys Chemie 234:813–834. https://doi.org/10.1515/zpch-2019-1425

    Article  CAS  Google Scholar 

  52. Tolba SA, Sharafeldin I, Allam NK (2020) Comparison between hydrogen production via H2S and H2O splitting on transition metal-doped TiO2(101) surfaces as potential photoelectrodes. Int J Hydrogen Energy 45:26758–26769. https://doi.org/10.1016/j.ijhydene.2020.07.077

    Article  CAS  Google Scholar 

  53. Chao J, Zwolinski BJ (1978) Ideal gas thermodynamic properties of methanoic and ethanoic acids. J Phys Chem Ref Data 7:363–377. https://doi.org/10.1063/1.555571

    Article  CAS  Google Scholar 

  54. Altman EI, Tanner RE (2003) Using scanning tunneling microscopy to characterize adsorbates and reactive intermediates on transition metal oxide surfaces. Catal Today 85:101–111. https://doi.org/10.1016/S0920-5861(03)00379-1

    Article  CAS  Google Scholar 

  55. Xu C, Koel BE (1995) Adsorption and reaction of CH3COOH and CD3COOD on the MgO(100) surface: a Fourier transform infrared and temperature programmed desorption study. J Chem Phys 102:8158–8166. https://doi.org/10.1063/1.469227

    Article  CAS  Google Scholar 

  56. González F, Munuera G, Prieto JA (1978) Mechanism of ketonization of acetic acid on anatase TiO2 surfaces. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 74:1517. https://doi.org/10.1039/f19787401517

    Article  Google Scholar 

  57. Tao J, Luttrell T, Bylsma J, Batzill M (2011) Adsorption of acetic acid on rutile TiO2 (110) vs (011)-2 × 1 surfaces. J Phys Chem C 115:3434–3442. https://doi.org/10.1021/jp111270x

    Article  CAS  Google Scholar 

  58. Rajadurai S (1994) Pathways for carboxylic acid decomposition on transition metal oxides. Catal Rev 36:385–403. https://doi.org/10.1080/01614949408009466

    Article  CAS  Google Scholar 

  59. Stubenrauch J, Brosha E, Vohs JM (1996) Reaction of carboxylic acids on CeO2(111) and CeO2(100). Catal Today 28:431–441. https://doi.org/10.1016/S0920-5861(96)00251-9

    Article  CAS  Google Scholar 

  60. Bowker M, Houghton H, Waugh KC (1983) The interaction of acetaldehyde and acetic acid with the ZnO surface. J Catal 79:431–444. https://doi.org/10.1016/0021-9517(83)90336-6

    Article  CAS  Google Scholar 

  61. Deskins NA, Kimmel GA, Petrik NG (2020) Observation of molecular hydrogen produced from bridging hydroxyls on anatase TiO2(101). J Phys Chem Lett 2:9289–9297. https://doi.org/10.1021/acs.jpclett.0c02735

    Article  CAS  Google Scholar 

  62. Hugenschmidt MB, Gamble L, Campbell CT (1994) The interaction of H2O with a TiO2(110) surface. Surf Sci 302:329–340. https://doi.org/10.1016/0039-6028(94)90837-0

    Article  CAS  Google Scholar 

  63. Henderson MA (1996) Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12:5093–5098. https://doi.org/10.1021/la960360t

    Article  CAS  Google Scholar 

  64. Perkins CL, Henderson MA, September RV (2001) Photodesorption and trapping of molecular oxygen at the TiO2(110)—water ice interface. J Phys Chem B 105:3856–3863. https://doi.org/10.1021/jp0031799

    Article  CAS  Google Scholar 

  65. Lane CD, Petrik NG, Orlando TM, Kimmel GA (2007) Electron-stimulated oxidation of thin water films adsorbed on TiO2(110). J Phys Chem C 111:16319–16329. https://doi.org/10.1021/jp072479o

    Article  CAS  Google Scholar 

  66. Du Y, Petrik NG, Deskins NA et al (2012) Hydrogen reactivity on highly-hydroxylated TiO2(110) surfaces prepared via carboxylic acid adsorption and photolysis. Phys Chem Chem Phys 14:3066–3074. https://doi.org/10.1039/C1CP22515D

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Z, Cao K, Yates JT (2013) Defect-electron spreading on the TiO2(110) semiconductor surface by water adsorption. J Phys Chem Lett 4:674–679. https://doi.org/10.1021/jz400101f

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program, FWP 47319. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. Computational resources were provided by a user proposal at the National Energy Research Scientific Computing Center located at Lawrence Berkley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mal-Soon Lee, Greg A. Kimmel or Zdenek Dohnálek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 300 KB)

Supplementary file2 (DOCX 5889 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connor, C.R., Ma, R., Collinge, G. et al. Insights into Acetic Acid Binding and Ketene Formation on Anatase TiO2(101). Top Catal 66, 1087–1101 (2023). https://doi.org/10.1007/s11244-023-01828-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01828-1

Keywords

Navigation