Skip to main content
Log in

Catalytic LPG Conversion Over Fe-Ga Modified ZSM-5 Zeolite Catalysts with Different Particle Sizes: Effect of Confined-Space Zeolite and External Magnetic Field

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, the principles of environmentally friendly and efficient resource utilization have been implemented to move towards achieving carbon neutrality. Accordingly, the confined-space molecular-sieve properties of ZSM-5 zeolite were applied in cooperation with an external magnetic field with the aim to improve the catalytic LPG conversion and the selectivity of BTX (benzene, toluene, and xylenes) over Fe-Ga/ZSM-5 zeolites (0.5 wt.% Ga and 0.1 wt.% Fe). Effect of ZSM-5 particle sizes (0.6 μm, 1.1 μm, and 22.1 μm) on BTX yields and toluene to monoaromatic hydrocarbons were examined under magnetic field at a flux intensity of 28.7 mT in North-to-South direction and compared to those without magnetic field. The highest LPG conversion over Fe-Ga/ZSM-5 catalyst was found at the ZSM-5 particle size of 1.1 µm under external magnetic field, which is 1.2 times greater than that without magnetic field. The BTX yield was also increased by factors of 1.5 compared to those without magnetic field. The outstanding performance can be attributed to the synergistic effects between the external magnetic field and limited mass transfer within the confined-space zeolite. This combination facilitates and enhances the mass transfer ability and reaction performance of the reactant molecules. Consequently, this synergistic effect can lead to the development of green and sustainable innovations for chemical and separation processes in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available in https://doi.org/10.1007/s11244-023-01825-4. Any additional information is available from the corresponding author upon request.

References

  1. Jin X, Lee JH, Choi JW (2022) Catalytic co-pyrolysis of woody biomass with waste plastics: effects of HZSM-5 and pyrolysis temperature on producing high-value pyrolytic products and reducing wax formation. Energy 239:121739. https://doi.org/10.1016/j.energy.2021.121739

    Article  CAS  Google Scholar 

  2. Pang XQ, Jia CZ, Chen ZX, Shi HS, Chen Z, Hu T, Wang T, Xu Z, Liu X, Zhang X, Wang E, Wu Z, Pang B (2022) Reduction of global natural gas hydrate (NGH) resource estimation and implications for the NGH development in the South China Sea. Pet Sci 19(1):3–12. https://doi.org/10.1016/j.petsci.2021.12.006

    Article  CAS  Google Scholar 

  3. Song C, Gim MY, Lim YH, Kim DH (2019) Enhanced yield of benzene, toulene, and xylene from the co-aromatization of methane and propane over gallium supported on mesoporous ZSM-5 and ZSM-11. Fuel 251:404–412. https://doi.org/10.1016/j.fuel.2019.04.079

    Article  CAS  Google Scholar 

  4. Oseke GG, Atta AY, Mukhtar B, El-Yakubu BJ, Aderemi BO (2021) Increasing the catalytic stability of microporous Zn/ZSM-5 with copper for enhanced propane aromatization. J King Saud Univ—Eng Sci 33(8):531–538. https://doi.org/10.1016/j.jksues.2020.07.014

    Article  Google Scholar 

  5. Sun Y, Wei L, Zhang Z, Zhang H, Li Y (2023) Coke formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: a review. Energy Fuels 37(3):1657–1677. https://doi.org/10.1021/acs.energyfuels.2c03479

    Article  CAS  Google Scholar 

  6. Liu D, Cao L, Zhang G, Zhao L, Gao J, Xu C (2021) Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts—a review. Fuel Process Technol 216:106770. https://doi.org/10.1016/j.fuproc.2021.106770

    Article  CAS  Google Scholar 

  7. Dehertog WJH, Fromen GF (1999) A catalytic route for aromatics production from LPG. Appl Catal A 189(1):63–75. https://doi.org/10.1016/S0926-860X(99)00252-5

    Article  CAS  Google Scholar 

  8. Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS (2018) Catalytic fast pyrolysis of kraft lignin with conventional, mesoporous and nanosized ZSM-5 zeolite for the production of alkyl-phenols and aromatics. Front Chem 6:295–295. https://doi.org/10.3389/fchem.2018.00295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang W, Fan S, Zhang J, Ma QX, Wang K, Zhao T (2019) Transformation of LPG on HZSM-5 catalyst: effects of tuned pores and acidity on product distribution. Fuel 254:115615

  10. Hajimirzaee S, Soleimani Mehr A, Kianfar E (2020) Modified ZSM-5 zeolite for conversion of LPG to aromatics. Polycyclic Arom Comp. https://doi.org/10.1080/10406638.2020.1833048.

  11. Liu RL, Zhu HQ, Wu ZW, Qin ZF, Fan WB, Wang JG (2015) Aromatization of propane over Ga-modified ZSM-5 catalysts. J Fuel Chem Technol 43(8):961–969. https://doi.org/10.1016/S1872-5813(15)30027-X

    Article  CAS  Google Scholar 

  12. Rodrigues VO (2010) Correlations between dispersion, acidity, reducibility, and propane aromatization activity of gallium species supported on HZSM5 zeolites. J Phys Chem C 114(10):4557–4567. https://doi.org/10.1021/jp910642p

    Article  CAS  Google Scholar 

  13. Laredo GC, García-Gutiérrez JL, Pérez-Romo P, Olmos-Cerda EH (2021) Effect of the catalyst in the BTX production by hydrocracking of light cycle oil. Appl Petrochem Res 11(1):19–38. https://doi.org/10.1007/s13203-021-00266-y

    Article  CAS  Google Scholar 

  14. Song Y, Lin W, Guo X, Dong L, Mu X, Tian H, Wang L (2019) Aromatization and isomerization of methylcyclohexane over Ni catalysts supported on different supports. Green Energy Environ 4(1):75–82. https://doi.org/10.1016/j.gee.2018.05.003

    Article  Google Scholar 

  15. Zhang Y, Wu S, Xu X, Jiang H (2020) Ethane aromatization and evolution of carbon deposits over nanosized and microsized Zn/ZSM-5 catalysts. Catal Sci Technol 10(3):835–843. https://doi.org/10.1039/C9CY01903K

    Article  CAS  Google Scholar 

  16. Sauer C, Schaefer A, Carlsson PA (2022) Isomorphous substitution of gallium into MFI-framework zeolite increases 2,5-dimethylfuran to aromatics selectivity and suppresses catalyst deactivation. Top Catal. https://doi.org/10.1007/s11244-022-01776-2

    Article  Google Scholar 

  17. Wan H, Chitta P (2016) Catalytic conversion of propane to BTX over Ga, Zn, Mo, and Re impregnated ZSM-5 catalysts. J Anal Appl Pyrol 121:369–375. https://doi.org/10.1016/j.jaap.2016.08.018

    Article  CAS  Google Scholar 

  18. Choudhary VR, Panjala D, Banerjee S (2002) Aromatization of propene and n-butene over H-galloaluminosilicate (ZSM-5 type) zeolite. Appl Catal A 231(1):243–251. https://doi.org/10.1016/S0926-860X(02)00061-3

    Article  CAS  Google Scholar 

  19. Sridhar A, Rahman M, Infantes-Molina A, Wylie BJ, Borcik CG, Khatib SJ (2020) Bimetallic Mo-Co/ZSM-5 and Mo-Ni/ZSM-5 catalysts for methane dehydroaromatization: a study of the effect of pretreatment and metal loadings on the catalytic behavior. Appl Catal A: General. https://doi.org/10.1016/j.apcata.2019.117247

    Article  Google Scholar 

  20. Uslamin EA, Saito H, Sekine Y, Hensen EJM, Kosinov N (2021) Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 Catalysts. Catal Today 369:184

    Article  CAS  Google Scholar 

  21. Fadaeerayeni S, Chen G, Toghiani H, Xiang Y (2020) Mechanism and kinetics of ethane aromatization according to the chemical transient analysis. Top Catal 63(15):1463–1473. https://doi.org/10.1007/s11244-020-01303-1

    Article  CAS  Google Scholar 

  22. Xu B, Tan M, Wu X, Geng H, Song F, Ma Q, Luan C, Yang G, Tan Y (2021) Effects of silylation on Ga/HZSM-5 for improved propane dehydroaromatization. Fuel 283:118889

    Article  CAS  Google Scholar 

  23. Lu J, Zhao Z, Xu C, Zhang P, Duan A (2006) Fe/HZSM-5 molecular sieves—highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene. Catal Commun 7(4):199–203. https://doi.org/10.1016/j.catcom.2005.10.011

    Article  CAS  Google Scholar 

  24. Oseke GG, Atta AY, Mukhtar B, Jibril BY, Aderemi BO (2020) Highly selective and stable Zn–Fe/ZSM-5 catalyst for aromatization of propane. Appl Petrochem Res 10(2):55–65. https://doi.org/10.1007/s13203-020-00245-9

    Article  CAS  Google Scholar 

  25. Donphai W, Kunthakudee N, Munpollasri S, Sangteantong P, Tonlublao S, Limphirat W, Poo-arporn Y, Kiatphuengporn S, Chareonpanich M (2021) Application of magnetic field to CO hydrogenation using a confined-space catalyst: effect on reactant gas diffusivity and reactivity. RSC Adv 11(7):3990–3996. https://doi.org/10.1039/d0ra09870a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiatphuengporn S, Jantaratana P, Limtrakul J, Chareonpanich M (2016) Magnetic field-enhanced catalytic CO2 hydrogenation and selective conversion to light hydrocarbons over Fe/MCM-41 catalysts. Chem Eng J 306:866–875. https://doi.org/10.1016/j.cej.2016.08.029

    Article  CAS  Google Scholar 

  27. Donphai W, Piriyawate N, Witoon T, Jantaratana P, Varabuntoonvit V, Chareonpanich M (2016) Effect of magnetic field on CO2 conversion over Cu-ZnO/ZrO2 catalyst in hydrogenation reaction. J CO2 Utiliz 16:204–211. https://doi.org/10.1016/j.jcou.2016.07.007

  28. Kiatphuengporn S, Chareonpanich M, Limtrakul J (2014) Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe–Cu catalysts for CO2 hydrogenation. Chem Eng J 240:527–533. https://doi.org/10.1016/j.cej.2013.10.090

    Article  CAS  Google Scholar 

  29. Sriakkarin C, Umchoo W, Donphai W, Poo-arporn Y, Chareonpanich M (2018) Sustainable production of methanol from CO2 over 10Cu-10Fe/ZSM-5 catalyst in a magnetic field-assisted packed bed reactor. Catal Today 314:114–121. https://doi.org/10.1016/j.cattod.2017.12.037

    Article  CAS  Google Scholar 

  30. Umchoo W, Sriakkarin C, Donphai W, Warakulwit C, Poo-arporn Y, Jantaratana P, Witoon T, Chareonpanich M (2018) Green and sustainable methanol production from CO2 over magnetized FeCu/core–shell and infiltrate mesoporous silica-aluminosilicates. Energy Convers Manage 159:342–352. https://doi.org/10.1016/j.enconman.2017.12.101

    Article  CAS  Google Scholar 

  31. Munpollasri S, Poo-arporn Y, Donphai W, Sirijaraensre J, Sangthong W, Kiatphuengporn S, Jantaratana P, Witoon T, Chareonpanich M (2022) How magnetic field affects catalytic CO2 hydrogenation over Fe-Cu/MCM-41: In situ active metal phase—reactivity observation during activation and reaction. Chem Eng J 441:135952. https://doi.org/10.1016/j.cej.2022.135952

    Article  CAS  Google Scholar 

  32. Yang Z, Zhang R, Liu R, Zhang S (2022) Elucidating the zeolite particle size effect on butene/isobutane alkylation. Ind Eng Chem Res 61(2):1032–1043. https://doi.org/10.1021/acs.iecr.1c02038

    Article  CAS  Google Scholar 

  33. Huang X, Wang R, Pan X, Wang C, Fan M, Zhu Y, Wang Y, Peng J (2020) Catalyst design strategies towards highly shape-selective HZSM-5 for para-xylene through toluene alkylation. Green Energy & Environment 5(4):385–393. https://doi.org/10.1016/j.gee.2019.12.001

    Article  CAS  Google Scholar 

  34. Harju H, Pipitone G, Lefferts L (2020) Influence of the catalyst particle size on the aqueous phase reforming of n-Butanol over Rh/ZrO2. Front Chem. https://doi.org/10.3389/fchem.2020.00017

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chareonpanich M, Namto T, Kongkachuichay P, Limtrakul J (2004) Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash. Fuel Process Technol 85(15):1623–1634. https://doi.org/10.1016/j.fuproc.2003.10.026

    Article  CAS  Google Scholar 

  36. Gil-Horán RH, Chavarría-Hernández JC, Quintana-Owen P, Gutiérrez-Alejandre A (2020) Ethanol conversion to short-chain olefins over ZSM-5 zeolite catalysts enhanced with P, Fe, and Ni. Top Catal 63(5):414–427. https://doi.org/10.1007/s11244-020-01229-8

    Article  CAS  Google Scholar 

  37. Li Q, Zhang F, Jarvis J, He P, Yung MM, Wang A, Zhao K, Song H (2018) Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane. Fuel 219:331–339. https://doi.org/10.1016/j.fuel.2018.01.104

    Article  CAS  Google Scholar 

  38. Van der Borght K, Galvita VV, Marin GB (2015) Ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: effect of metal content. Appl Catal A 492:117–126. https://doi.org/10.1016/j.apcata.2014.12.020

    Article  CAS  Google Scholar 

  39. Denardin F, Perez-Lopez OW (2019) Tuning the acidity and reducibility of Fe/ZSM-5 catalysts for methane dehydroaromatization. Fuel 236:1293–1300. https://doi.org/10.1016/j.fuel.2018.09.128

    Article  CAS  Google Scholar 

  40. Xin M, Xing E, Gao X, Wang Y, Ouyang Y, Xu G, Luo Y, Shu X (2019) Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance. Ind Eng Chem Res 58(17):6970–6981. https://doi.org/10.1021/acs.iecr.9b00295

    Article  CAS  Google Scholar 

  41. Chaudhary PK, Deo G (2022) Influence of particle size and metal-support interaction on the catalytic performance of Ni-Al2O3 catalysts for the dry and oxidative-dry reforming of methane. Coll Surf A: Physicochem Eng Aspects 646:128973. https://doi.org/10.1016/j.colsurfa.2022.128973.

  42. Xie JL, Jin QQ (2022) Effect of La/Ce modification over Cu based Y zeolite catalysts on high temperature selectivity for selective catalytic reduction with ammonia. J Cleaner Prod 362:132255. https://doi.org/10.1016/j.jclepro.2022.132255

    Article  CAS  Google Scholar 

  43. Begum SH, Hung CT, Chen YT, Huang SJ, Wu PH, Han X, Liu SB (2016) Acidity-activity correlation over bimetallic iron-based ZSM-5 catalysts during selective catalytic reduction of NO by NH3. J Mol Catal A: Chem 423:423–432. https://doi.org/10.1016/j.molcata.2016.07.036

    Article  CAS  Google Scholar 

  44. Caiola A, Robinson B, Bai X, Shekhawat D, Hu J (2021) Study of the hydrogen pretreatment of gallium and platinum promoted ZSM-5 for the ethane dehydroaromatization reaction. Ind Eng Chem Res 60(30):11421–11431. https://doi.org/10.1021/acs.iecr.1c01555

    Article  CAS  Google Scholar 

  45. Sharifi K, Halladj R, Royaee SJ (2020) An overview on the effects of metal promoters and acidity of ZSM-5 in performance of the aromatization of liquid hydrocarbons. Rev Adv Mater Sci 59(1):188–206. https://doi.org/10.1515/rams-2020-0037

  46. Biz C, Gracia J, Fianchini M (2022) Review on magnetism in catalysis: from theory to PEMFC applications of 3d metal Pt-based alloys. Int J Mol Sci 23:14768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao J, Wei J (1992) Diffusion mechanism of hydrocarbons in zeolites—I. Theory. Chem Eng Sci 47(5):1123–1141. https://doi.org/10.1016/0009-2509(92)80236-6

    Article  CAS  Google Scholar 

  48. Cao Q, Han X, Li L (2014) Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip 14(15):2762–2777. https://doi.org/10.1039/C4LC00367E

    Article  CAS  PubMed  Google Scholar 

  49. Vick WS (1991) Magnetic fluid conditioning. In: Conference on Environmental Engineering; American Society of Civil Engineers, Reston, VA

Download references

Acknowledgements

This research was financially supported by the National Research Council of Thailand (NRCT) through the Research Team Promotion Grant/Senior Research Scholar (Grant No. N42A640324); the Nanotechnology Center (NANOTEC), the Ministry of Science and Technology, Thailand, through its program of Research Network of NANOTEC (RNN); the Kasetsart University Research and Development Institute (KURDI); and Faculty of Engineering, Kasetsart University.

Author information

Authors and Affiliations

Authors

Contributions

ZD: investigation, writing—original draft. RC: investigation. PS: investigation. WD: methodology, data curation, validation. WL: investigation, data curation. YP: investigation, data curation. SN: investigation, data curation. SK: investigation, data curation. PJ: investigation, data curation (magnetic field). MC: conceptualization, funding acquisition, methodology, project administration, resources, supervision, writing—review & editing (Corresponding Author).

Corresponding author

Correspondence to Metta Chareonpanich.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 406 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Chotchaipitakkul, R., Sangteantong, P. et al. Catalytic LPG Conversion Over Fe-Ga Modified ZSM-5 Zeolite Catalysts with Different Particle Sizes: Effect of Confined-Space Zeolite and External Magnetic Field. Top Catal 66, 1594–1607 (2023). https://doi.org/10.1007/s11244-023-01825-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01825-4

Keywords

Navigation