Skip to main content

Advertisement

Log in

Highly Dispersed Zn Sites on ZrO2 by Flame Spray Pyrolysis for CO2 Hydrogenation to Methanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study, we synthesized xZnO–ZrO2 (x = 14–40 at%) by flame spray pyrolysis under a lean-fuel condition. The optimal ZnO content was investigated to obtain a ZnO–ZrO2 solid solution with high specific surface area for CO2-to-methanol hydrogenation. The Zn species in ZnO–ZrO2 were highly dispersed and hexagonal ZnO was not detected by X-ray diffraction (XRD). After heating the particles in Ar at 400 °C for 3 h, hexagonal ZnO particles were observed at x = 40 at%, while below x = 28 at%, the Zn species remained high dispersion state. A fraction of the Zn species was substituted into the bulk of the ZrO2 particles, as evidenced by the shift of the ZrO2 (101) peak in the XRD patterns. The elemental mapping of Zn and Zr in 28 at% ZnO–ZrO2 showed that the Zn species on the surface were uniformly distributed. The presence of partially reduced Zrδ+ state (δ < 4) was confirmed by X-ray photoelectron spectroscopy. The Zrδ+ state in the ZnO–ZrO2 particles was prominent when ZnO content was below 28 at%. The catalytic activity of 28 at% ZnO–ZrO2 for CO2-to-methanol hydrogenation was higher than that of 40 at% ZnO–ZrO2. At 300 °C and 1.0 MPa, the CO2 conversion and the selectivity to methanol over 28 at% ZnO–ZrO2 were 9 and 48%, respectively, resulting in the high yield of methanol (4.3%).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52:104–107

    Article  CAS  Google Scholar 

  2. Samson K, Śliwa M, Socha RP, Góra-Marek K, Mucha D, Rutkowska-Zbik D, Paul JF, Ruggiero-Mikołajczyk M, Grabowski R, Słoczyński J (2014) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4:3730–3741

    Article  CAS  Google Scholar 

  3. Kattel S, Yan B, Yang Y, Chen JG, Liu P (2016) Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J Am Chem Soc 138:12440–12450

    Article  CAS  PubMed  Google Scholar 

  4. Witoon T, Chalorngtham J, Dumrongbunditkul P, Chareonpanich M, Limtrakul J (2016) CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases. Chem Eng J 293:327–336

    Article  CAS  Google Scholar 

  5. Ro I, Liu Y, Ball MR, Jackson DHK, Chada JP, Sener C, Kuech TF, Madon RJ, Huber GW, Dumesic JA (2016) Role of the Cu-ZrO2 Interfacial Sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2. ACS Catal 6:7040–7050

    Article  CAS  Google Scholar 

  6. Fisher IA, Bell AT (1997) In-situInfrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. J Catal 172:222–237

    Article  CAS  Google Scholar 

  7. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science 336:893–897

    Article  CAS  PubMed  Google Scholar 

  8. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550

    Article  CAS  PubMed  Google Scholar 

  9. Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J (2018) Enhanced activity, selectivity and stability of a CuO–ZnO–ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem Eng J 334:1781–1791

    Article  CAS  Google Scholar 

  10. Martin O, Martín AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D (2016) Pérez-Ramírez, Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 55:6261–6265

    Article  CAS  Google Scholar 

  11. Shi Z, Tan Q, Wu D (2019) A novel Core–Shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol. AIChE J 65:1047–1058

    Article  CAS  Google Scholar 

  12. Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146

    Article  CAS  Google Scholar 

  13. Iwasa N, Mayanagi T, Ogawa N, Sakata K, Takezawa N (1998) New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol. Catal Lett 54:119–123

    Article  CAS  Google Scholar 

  14. Nie X, Jiang X, Wang H, Luo W, Janik MJ, Chen Y, Guo X, Song C (2018) Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catal 8:4873–4892

    Article  CAS  Google Scholar 

  15. Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6:320

    Article  CAS  PubMed  Google Scholar 

  16. Tada S, Satokawa S (2018) Effect of ag loading on CO2-to-methanol hydrogenation over Ag/CuO/ZrO2, Catal. Commun 113:41–45

    CAS  Google Scholar 

  17. Fröhlich C, Köppel RA, Baiker A, Kilo M, Wokaun A (1993) Hydrogenation of carbon dioxide over silver promoted copper/zirconia catalysts. Appl Catal A-Gen 106:275–293

    Article  Google Scholar 

  18. Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C (2017) A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci Adv 3:e1701290

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Tang C, Li G, Han Z, Li Z, Liu H, Cheng F, Li C (2019) High-performance MaZrOx (ma = cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol. ACS Catal 9:10253–10259

    Article  CAS  Google Scholar 

  20. Tada S, Iyoki K (2021) Influence of reaction temperature on CO2-to-methanol hydrogenation over MZrOx (M = Al, Mn, Cu, Zn, Ga, and in. Chem Lett 50:724–726

    Article  CAS  Google Scholar 

  21. Temvuttirojn C, Poo-arporn Y, Chanlek N, Cheng CK, Chong CC, Limtrakul J, Witoon T (2020) Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts. Ind Eng Chem Res 59:5525–5535

    Article  CAS  Google Scholar 

  22. Tada S, Ochiai N, Kinoshita H, Yoshida M, Shimada N, Joutsuka T, Nishijima M, Honma T, Yamauchi N, Kobayashi Y, Iyoki K (2022) Active sites on ZnxZr1–xO2–x solid solution catalysts for CO2-to-methanol hydrogenation. ACS Catal 12:7748–7759

    Article  CAS  Google Scholar 

  23. Li W, Wang K, Huang J, Liu X, Fu D, Huang J, Li Q, Zhan G (2019) MxOy–ZrO2 (M = Zn, Co, Cu) solid solutions derived from Schiff Base-Bridged UiO-66 Composites as high-performance catalysts for CO2 hydrogenation. ACS Appl Mater Interfaces 11:33263–33272

    Article  CAS  PubMed  Google Scholar 

  24. Han Z, Tang C, Sha F, Tang S, Wang J, Li C (2021) CO2 hydrogenation to methanol on ZnO–ZrO2 solid solution catalysts with ordered mesoporous structure. J Catal 396:242–250

    Article  CAS  Google Scholar 

  25. Madler L, Kammler HK, Mueller R, Pratsinis SE (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33:369–389

    Article  CAS  Google Scholar 

  26. Wegner K, Schimmoeller B, Thiebaut B, Fernandez C, Rao TN (2011) Pilot plants for industrial nanoparticle production by flame spray pyrolysis. KONA Powder Part J 29:251–265

    Article  CAS  Google Scholar 

  27. Strobel R, Stark WJ, Mädler L, Pratsinis SE, Baiker A (2003) Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. J Catal 213:296–304

    Article  CAS  Google Scholar 

  28. Teoh WY, Amal R, Mädler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347

    Article  CAS  PubMed  Google Scholar 

  29. Stark WJ, Madler L, Maciejewski M, Pratsinis SE, Baiker A (2003) Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. Chem Commun 5:588–589

    Article  Google Scholar 

  30. Güntner A, Pineau N, Chie D, Krumeich F, Pratsinis S (2016) Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4:5358–5366

    Article  PubMed  Google Scholar 

  31. Fujiwara K, Pratsinis SE (2018) Single pd atoms on TiO2 dominate photocatalytic NOx removal. Appl Catal B-Environ 226:127–134

    Article  CAS  Google Scholar 

  32. Phakatkar AH, Saray MT, Rasul MG, Sorokina LV, Ritter TG, Shokuhfar T, Shahbazian-Yassar R (2021) Ultrafast synthesis of high entropy oxide nanoparticles by flame spray pyrolysis. Langmuir 37:9059–9068

    Article  CAS  PubMed  Google Scholar 

  33. Høj M, Jensen AD, Grunwaldt J-D (2013) Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis. Appl Catal A-Gen 451:207–215

    Article  Google Scholar 

  34. Kydd R, Teoh WY, Wong K, Wang Y, Scott J, Zeng QH, Yu AB, Zou J, Amal R (2009) Flame-synthesized ceria‐supported copper dimers for preferential oxidation of CO. Adv Funct Mater 19:369–377

    Article  CAS  Google Scholar 

  35. Fujiwara K, Pratsinis SE (2017) Atomically dispersed pd on nanostructured TiO2 for NO removal by solar light. AIChE J 63:139–146

    Article  CAS  Google Scholar 

  36. Ding S, Chen H-A, Mekasuwandumrong O, Hülsey MJ, Fu X, He Q, Panpranot J, Yang C-M, Yan N (2021) High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Appl Catal B-Environ 281:119471

    Article  CAS  Google Scholar 

  37. Šot P, Noh G, Weber IC, Pratsinis SE, Copéret C (2022) The influence of ZnO–ZrO2 interface in hydrogenation of CO2 to CH3OH.  Helv Chim Acta 105:e202200007

    Article  Google Scholar 

  38. Štefanić G, Musić S, Ivanda M (2009) Phase development of the ZrO2–ZnO system during the thermal treatments of amorphous precursors. J Mol Struct 924:225–234

    Article  Google Scholar 

  39. Koirala R, Pratsinis SE, Baiker A (2016) Synthesis of catalytic materials in flames: opportunities and challenges. Chem Soc Rev 45:3053–3068

    Article  CAS  PubMed  Google Scholar 

  40. Mueller R, Jossen R, Pratsinis SE, Watson M, Akhtar MK (2004) Zirconia nanoparticles made in spray flames at high production rates. J Am Ceram Soc 87:197–202

    Article  CAS  Google Scholar 

  41. Jossen R, Heine MC, Pratsinis SE, Akhtar MK (2006) Thermal stability of flame-made zirconia-based mixed oxides. Chem Vap Depos 12:614–619

    Article  CAS  Google Scholar 

  42. Ma C, Zou X, Li A, Gao Z, Luo L, Shen S, Zhang J, Huang Z, Zhu L (2022) Rapid flame synthesis of carbon doped defective ZnO for electrocatalytic CO2 reduction to syngas. Electrochim Acta 411:140098

    Article  CAS  Google Scholar 

  43. Chen H, Bo R, Shrestha A, Xin B, Nasiri N, Zhou J, Di Bernardo I, Dodd A, Saunders M, Lipton-Duffin J, White T, Tsuzuki T, Tricoli A (2018) NiO–ZnO nanoheterojunction networks for room-temperature volatile organic compounds sensing. Adv Opt Mater 6:1800677

    Article  Google Scholar 

  44. Tada S, Fujiwara K, Yamamura T, Nishijima M, Uchida S, Kikuchi R (2020) Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chem Eng J 381:122750

    Article  CAS  Google Scholar 

  45. Al-Gaashani R, Radiman S, Daud A, Tabet N, Al-Douri Y (2013) XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram Int 39:2283–2292

    Article  CAS  Google Scholar 

  46. Morant C, Sanz J, Galan L, Soriano L, Rueda F (1989) An XPS study of the interaction of oxygen with zirconium. Surf Sci 218:331–345

    Article  CAS  Google Scholar 

  47. Ardizzone S, Bianchi CL (2000) XPS characterization of sulphated zirconia catalysts: the role of iron. Surf Interface Anal 30:77–80

    Article  CAS  Google Scholar 

  48. Sato AG, Volanti DP, Meira DM, Damyanova S, Longo E, Bueno JMC (2013) Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion. J Catal 307:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Leading Initiative for Excellent Young Researchers (LEADER) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. STEM measurements were supported by the microstructural characterization platform at Osaka University (JPMXP09A21OS0012) in a nanotechnology platform project sponsored by MEXT, Japan. XPS measurements were performed at Industrial Technology Institute, Miyagi Prefectural Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kakeru Fujiwara or Shohei Tada.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1684 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, K., Akutsu, T., Nishijima, M. et al. Highly Dispersed Zn Sites on ZrO2 by Flame Spray Pyrolysis for CO2 Hydrogenation to Methanol. Top Catal 66, 1492–1502 (2023). https://doi.org/10.1007/s11244-023-01803-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01803-w

Keywords

Navigation