Skip to main content
Log in

Effect of a High Thermal Capacitance Core–Shell Structure on Co-Ru/SiO2 Catalyst for Low Temperature Fischer–Tropsch Synthesis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Commercial cylindrical mesoporous silica pellets (3 mm diameter by 3–6 mm length) were modified by coring the pellets and inserting a 1 mm diameter copper wire along the long axis of the pellet, to give a pseudo core–shell support. While there were negligible differences in the thermal conductance of the two supports, the volumetric thermal capacitance of the core–shell support was 4.1 times greater than the unmodified silica. Fischer–Tropsch synthesis (FTS) catalysts comprised of 16 wt% Co and 1.5 wt% Ru immobilized on the native pellets (control catalyst, CT) or on the core–shell support (CS-Cu catalyst) were prepared, placed in a tubular packed-bed reactor and reduced with H2 at 400 °C. The catalysts were conditioned for FTS (255 °C; 10 atm; H2/CO = 2; GSV 510 h−1) by cooling to 150 °C, changing to a syngas atmosphere, and slowly ramping to the run temperature of 255 °C over 8 h. Measurements of the catalyst bed temperature and furnace temperature during the activation and run time revealed frequent and large temperature spikes (∆T ~ 70 °C) in the CT bed, especially in the first 12 h of operation. In comparison, runs using the CS-Cu catalyst experienced fewer and less substantive temperature spikes (∆T ~ 30 °C). From the thermal data and the FTS productivity data, it was clear that the CT catalyst experienced a substantially greater degree to deactivation due to the thermal spikes than the CS-Cu catalysts. At similar conversions, the CS-Cu showed 50% greater productivity (gproduct/gCoh) and a small but reproducible improvement in C5+ selectivity (52–55 wt%). Notably, the CS-Cu catalyst gave an appreciably smaller amount of the olefinic product (3 vs 15%). The thermal capacitance of the CS-Cu clearly moderates the negative consequences of local exotherms in the catalyst bed, especially during the activation phase of the FTS run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dry ME (1982) Catalytic aspects of industrial Fischer-Tropsch synthesis. J Mol Catal 17:133–144

    Article  CAS  Google Scholar 

  2. Davis BH (2005) Fischer-Tropsch synthesis: overview of reactor development and further potentialities. Top Catal 32:143–168

    Article  CAS  Google Scholar 

  3. Krishna R, Sie S (2000) Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process Technol 64:73–105

    Article  CAS  Google Scholar 

  4. Satterfield CN, Huff GA, Stenger HG (1985) A comparison of Fischer-Tropsch synthesis in a fixed bed reactor and in a slurry reactor. Ind Eng Chem Fundam 24:450–454

    Article  CAS  Google Scholar 

  5. Zhu X, Lu X, Liu X, Hildebrandt D, Glasser D (2014) Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts. Chem Eng J 247:75–84

    Article  CAS  Google Scholar 

  6. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138:319–344

    Article  CAS  Google Scholar 

  7. Dictor RA, Bell AT (1986) Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J Catal 97:121–136

    Article  CAS  Google Scholar 

  8. Philippe R, Lacroix M, Dreibine L, Pham-Huu C, Edouard D, Savin S, Luck F, Schweich D (2009) Effect of structure and thermal properties of a Fischer-Tropsch catalyst in a fixed bed. Catal Today 147S:S305–S312

    Article  Google Scholar 

  9. Dry ME (1990) The Fischer-tropsch process—commercial aspects. Catal Today 6:183–206

    Article  CAS  Google Scholar 

  10. Schulz H, van Steen E, Claeys M (1995) Specific inhibition as the kinetic principle of the Fischer-Tropsch synthesis. Top Catal 2:223–234

    Article  CAS  Google Scholar 

  11. Visconti CG, Tronconi E, Lietti L, Forzatti P, Rossini S, Zdnnaro R (2011) Detailed kinematics of the Fischer-Tropsch synthesis on cobalt catalysts based on H-assisted CO activation. Top Catal 54:786–800

    Article  CAS  Google Scholar 

  12. Ma W, Jacobs G, Gao P, Jermwongratanachai T, Shafer WD, Pendyala VRR, Yen CH, Klettlinger JLS, Davis BH (2014) Fischer-Tropsch synthesis: pore size and Zr promotional effects on the activity and selectivity of 25%Co/Al2O3 catalysts. Appl Catal A 475:314–324

    Article  CAS  Google Scholar 

  13. He L, Teng B, Zhang Y, Fan M (2015) Development of composited rare-earth promoted cobalt-based Fischer-Tropsch synthesis catalysts with high activity and selectivity. Appl Catal A 505:276–283

    Article  CAS  Google Scholar 

  14. Iglesia E, Soled SL, Baumgartner JE, Reyes SC (1995) Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis. J Catal 2:108–122

    Article  Google Scholar 

  15. Chen C, Yuuda H, Li X (2011) Fischer-Tropsch synthesis over one eggshell-type Co/SiO2 catalyst in a slurry phase reactor. Appl Catal A 396:116–122

    Article  CAS  Google Scholar 

  16. Gardezi SA, Landrigan L, Joseph B, Wolan JT (2012) Synthesis of tailored wa cobalt catalysts for Fischer-Tropsch synthesis using wet chemisistry techniques. Ind Eng Chem Res 51:1703–1712

    Article  CAS  Google Scholar 

  17. Gardezi SA, Wolan JT, Joseph B (2012) Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis. Appl Catal A 447–448:151–163

    Article  Google Scholar 

  18. Fratalocchi L, Visconti CG, Lietti L, Tronconi E, Cornaro U, Rossini S (2015) A novel preparation method for “small” eggshell Co/-Al2O3 catalysts: a promising catalytic system for compact Fischer-Tropsch reactors. Catal Today 246:125–132

    Article  CAS  Google Scholar 

  19. Wang D, Chen C, Wang J, Jia L, Hou B, Li D (2016) High thermal conductive core-shell structured Al2O3@Al composite supported cobalt catalyst for Fischer-Tropsch synthesis. Appl Catal A 527:60–71

    Article  CAS  Google Scholar 

  20. Li K, Cheng X, Li N, Zhu X, Wei Y, Zhai K, Wang H (2017) A yolk/shell strategy for designing hybrid phase change material for heat management in catalytic reactions. J Mater Chem A 5:24232–24246

    Article  CAS  Google Scholar 

  21. Sheng M, Yang H, Cahela DR, Yantz WR Jr, Gonzalez CF, Tatarchuk BJ (2012) High conductivity catalyst structures for applications in exothermic reactions. Appl Catal A 445–446:143–152

    Article  Google Scholar 

  22. Park JC, Roh NS, Chun DH, Jung H, Yang JI (2014) Cobalt catalyst coated metallic foam and heat-exchanger type reactor for Fischer-Tropsch synthesis. Fuel Process Technol 119:60–66

    Article  CAS  Google Scholar 

  23. Asalieva E, Gryaznov K, Kulchakovskaya E, Ermolaev I, Sineva L, Mordkovich V (2015) Fischer-Tropsch synthesis on cobalt-based catalyst with different thermally conductive additives. Appl Catal A 505:260–266

    Article  CAS  Google Scholar 

  24. Fratalocchi L, Visconti CG, Groppi G, Tronconi E (2018) Intensifying heat transfer in Fischer-Tropsch tubular reactors through the adoption of conductive packed foams. Chem Eng J 349:829–837

    Article  CAS  Google Scholar 

  25. Fratalocchi L, Visconti CG, Groppi G, Tronconi E (2020) Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors. Chem Eng J 386:123988

    Article  CAS  Google Scholar 

  26. Merino D, Sanz O, Montes M (2017) Effect of the thermal conductivity and catalyst layer thickness on the Fishcer-Tropsch synthesis selectivity using structured catalysts. Chem Eng J 327:1033–1042

    Article  CAS  Google Scholar 

  27. Yang JI, Yang JH, Kim HJ, Jung HCDH, Lee HT (2010) Highly effective cobalt catalyst for wax production in Fischer-Tropsch synthesis. Fuel 89:237–243

    Article  CAS  Google Scholar 

  28. ASTM Standard E1269–11, 2018, “Standard test method for determining specific heat capacity by differential scanning calorimetry,” ASTM International, West Conshohocken, PA, 2015.

  29. Maxwell JC (1970) Theory of heat. Greenwood Press

    Google Scholar 

  30. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal 206:230–241. https://doi.org/10.1006/jcat.2001.3496

    Article  CAS  Google Scholar 

  31. ten Have IC, Weckhuysen BM (2021) The active phase in cobalt-based Fischer-Tropsch synthesis. Chem Catal 1(2):339–363

    Article  Google Scholar 

  32. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal Sci Technol 4(8):2210–2229

    Article  CAS  Google Scholar 

  33. Jung J-S, Lee J-S, Choi G, Ramesh S, Moon DJ (2015) The characterization of micro-structure of cobalt on g-Al2O3 for FTS: effects of pretreatment on Ru-Co/ g-Al2O3. Fuel 149:118–129

    Article  CAS  Google Scholar 

  34. Karaca H, Safonova OV, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Khodakov AY (2011) Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis. J Catal 277:14–26

    Article  CAS  Google Scholar 

  35. Liu J-X, Su H-Y, Sun D-P, Zhang B-Y, Li W-X (2013) Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J Am Chem Soc 135(44):16284–16287

    Article  CAS  PubMed  Google Scholar 

  36. Huff GA Jr, Satterfield CN (1985) Liquid accumulation in catalyst pores in a Fischer-Tropsch fixed-bed reactor. Ind Eng Chem Process Des Dev 24:986–995

    Article  CAS  Google Scholar 

  37. Yang R, Chen G (2005) Thermal conductivity modeling of core-shell and tubular nanowires. Nano Lett 5:1111–1115

    Article  CAS  PubMed  Google Scholar 

  38. Prasher R (2006) Thermal conductivity of tubular and core/shell nanowires. Appl Phys Lett 89:63121

    Article  Google Scholar 

  39. Sheng M, Yang H, Cahela DR, Tatarchuk BJ (2011) Novel catalyst structures with enhanced heat transfer characteristics. J Catal 281:254–262

    Article  CAS  Google Scholar 

  40. Bao J, Tsubaki N (2012) Core-shell catalysts and bimodal catalysts for Fischer-Tropsch synthesis. Catalysis 25:216–245

    Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by Greenway Innovative Energy, Arlington, TX. The authors thank Saint-Gobain NorPro for providing the commercial silicon oxide catalyst support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick M. MacDonnell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 175 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bootpakdeetam, P., MacDonnell, F.M. & Dennis, B.H. Effect of a High Thermal Capacitance Core–Shell Structure on Co-Ru/SiO2 Catalyst for Low Temperature Fischer–Tropsch Synthesis. Top Catal 66, 498–507 (2023). https://doi.org/10.1007/s11244-023-01797-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01797-5

Keywords

Navigation