Skip to main content
Log in

Grand Canonical Quantum Mechanics with Applications to Mechanisms and Rates for Electrocatalysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We outline the recently developed Grand Canonical Potential Kinetics (GCP-K) method to implement Grand Canonical Quantum Mechanics for predicting electrochemical reactions as a function of applied potential rather than with fixed numbers of electrons as in traditional Quantum Mechanics (QM) calculations. We describe here the recent validation of GCP-K for The Co/TiO2 single atom catalyst for the Oxygen Evolution Reaction (OER) on a single crystal nanoparticle where a single surface facet was present. The basal plane of transition metal dichalcogenides (TMDs) in the 1 T’ phase of WSe2 and WTe2, which leads to high-performance for the hydrogen evolution reaction (HER). We find that GCP-K predicts accurate TOF and currents as a function of applied potential and accurate Tafel slopes for both the Co/TiO2 OER and the chalcogenide HER systems for which we can be confident of the surface structure. Thus we expect that these methods will be useful in the more common situation for which there is much less certainty about the surface structure under experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Banerjee T, Mukherjee A (2014) Overall water splitting under visible light irradiation using nanoparticulate RuO2 loaded Cu2O powder as photocatalyst. Energy Procedia 54:221–227

    Article  CAS  Google Scholar 

  2. Kim J, Hwang DW, Kim HG, Bae SW, Lee JS, Li W, Oh SH (2005) Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts. Top Catal 35:295–303

    Article  CAS  Google Scholar 

  3. Suryanto BHR, Wang Y, Hocking RK, Adamson W, Zhao C (2019) Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat Commun 10:5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li X, Hao X, Abudulaa A, Guan G (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4:11973–12000

    Article  CAS  Google Scholar 

  5. Wang J, Yue J, Yang Y, Sirisomboonchai S, Wang P, Ma X, Abudula A, Guan G (2020) Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloys Compd 819:153346

    Article  CAS  Google Scholar 

  6. Moradi M, Afshari M, Hashemifar SJ (2013) First-principles prediction of half-metallicity at the low index surfaces of rocksalt KS. Surf Sci 616:71–75

    Article  CAS  Google Scholar 

  7. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138

    Article  Google Scholar 

  8. Cheng MJ, Goddard WA III (2015) In silico design of highly selective Mo-V-Te-Nb-O mixed metal oxide catalysts for ammoxidation and oxidative dehydrogenation of propane and ethane. J Am Chem Soc 137(41):13224–13227

    Article  CAS  PubMed  Google Scholar 

  9. Cheng MJ, Goddard WA III, Fu R (2014) The reduction-coupled Oxo activation (ROA) mechanism responsible for the catalytic selective activation and functionalization of n-butane to maleic anhydride by vanadium phosphate oxide. Top Catal 57:1171–1187

    Article  CAS  Google Scholar 

  10. Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9(25):3241–3250

    Article  PubMed  Google Scholar 

  11. Taylor CD, Neurock M (2005) Theoretical insights into the structure and reactivity of the aqueous/metal interface. Curr Opin Solid State Mater Sci 9(1–2):49–65

    Article  CAS  Google Scholar 

  12. Taylor CD, Wasileski SA, Filhol JS, Neurock M (2006) First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys Rev B 73:165402

    Article  Google Scholar 

  13. Huang Y, Nielsen RJ, Goddard WA III (2018) Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of mos2 using grand canonical potential kinetics. J Am Chem Soc 140(48):16773–16782

    Article  CAS  PubMed  Google Scholar 

  14. Jinnouchi R, Anderson AB (2008) Electronic structure calculations of liquid-solid interfaces: combination of density functional theory and modified poisson-boltzmann theory. Phys Rev B 77:245417

    Article  Google Scholar 

  15. Sha Y, Yu TH, Merinov BV, Goddard WA III (2012) Prediction of the dependence of the fuel cell oxygen reduction reactions on operating voltage from DFT calculations. J Phys Chem C 116(10):6166–6173

    Article  CAS  Google Scholar 

  16. Gunceler D, Letchworth-Weaver K, Sundararaman R, Schwarz KA, Arias TA (2013) The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Modell Simul Mater Sci Eng 21(7):074005

    Article  Google Scholar 

  17. Sundararaman R, Goddard WA III (2015) The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. J Chem Phys 142(6):064107

    Article  PubMed  Google Scholar 

  18. Goodpaster JD, Bell AT, Head-Gordon M (2016) Identification of possible pathways for C-C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J Phys Chem Lett 7(8):1471–1477

    Article  CAS  PubMed  Google Scholar 

  19. Liu C, Qian J, Ye Y, Zhou H, Sun C-J, Sheehan C, Zhang Z, Wan G, Liu Y-S, Guo J, Li S, Shin H, Hwang S, Gunnoe TB, Goddard WA III, Zhang S (2021) Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat Catal 4(1):36–45

    Article  CAS  Google Scholar 

  20. Ping Y, Nielsen RJ, Goddard WA III (2017) The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2 (110) surface. J Am Chem Soc 139:149–155

    Article  CAS  PubMed  Google Scholar 

  21. Xiao H, Shin H, Goddard WA III (2018) Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction. Proc Natl Acad Sci USA 115:5872–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roy C et al (2018) Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat Catal 1:820–829

    Article  CAS  Google Scholar 

  23. Grimaud A et al (2017) Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem 9:457

    Article  CAS  PubMed  Google Scholar 

  24. Yoo JS, Rong X, Liu Y, Kolpak AM (2018) Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal 8:4628–4636

    Article  CAS  Google Scholar 

  25. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  CAS  Google Scholar 

  26. Song J, Kwon S, Hossain MD, Chen S, Li ZY, Goddard WA III (2021) Reaction mechanism and strategy for optimizing the hydrogen evolution reaction on single-layer 1T′ WSe2 and WTe2 based on grand canonical potential kinetics. ACS Appl Mater Interfaces 13(46):55611–55620

    Article  CAS  PubMed  Google Scholar 

  27. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13(12):6222–6227

    Article  CAS  PubMed  Google Scholar 

  28. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic mos2 nanosheets. J Am Chem Soc 135(28):10274–10277

    Article  CAS  PubMed  Google Scholar 

  29. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Nielsen RJ, Goddard WA III, Soriaga MP (2015) The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J Am Chem Soc 137(20):6692–6698

    Article  CAS  PubMed  Google Scholar 

  31. Tsai C, Li H, Park S, Park J, Han HS, Nørskov JK, Zheng X, Abild-Pedersen F (2017) Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun 8:15113

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ouyang Y, Ling C, Chen Q, Wang Z, Shi L, Wang J (2016) Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem Mater 28:4390–4396

    Article  CAS  Google Scholar 

  33. Wei C, Wu W, Li H, Lin X, Wu T, Zhang Y, Xu Q, Zhang L, Zhu Y, Yang X, Liu Z, Xu Q (2019) Atomic Plane-Vacancy Engineering of Transition-Metal Dichalcogenides with Enhanced Hydrogen Evolution Capability. ACS Appl Mater Interfaces 11(28):25264–25270

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y, Zhang X, Maoa B, Cao M (2016) Controllable selenium vacancy engineering in basal planes of mechanically exfoliated WSe2 monolayer nanosheets for efficient electrocatalytic hydrogen evolution. Chem Commun 52:14266–14269

    Article  CAS  Google Scholar 

  35. Kwon H, Ji B, Bae D, Lee JH, Park HJ, Kim DH, Kim YM, Son YW, Yang H, Cho S (2020) Role of anionic vacancy for active hydrogen evolution in WTe2. Appl Surf Sci 515:145972

    Article  CAS  Google Scholar 

  36. Lee J, Kang S, Yim K, Kim KY, Jang HW, Kang Y, Han S (2018) Hydrogen evolution reaction at anion vacancy of two-dimensional transition-metal dichalcogenides: Ab initio computational screening. J Phys Chem Lett 9(8):2049–2055

    Article  CAS  PubMed  Google Scholar 

  37. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    Article  CAS  PubMed  Google Scholar 

  38. Voiry M, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Liu X, Luo J, Duan X, Crittenden J, Liu C, Zhang S, Pei Y, Zeng Y, Duan X (2017) Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew Chem Int Ed 56:7610–7614

    Article  CAS  Google Scholar 

  40. Sokolikova MS, Sherrell PC, Palczynski P, Bemmer VL, Mattevi C (2019) Direct solution-phase synthesis of 1T’ WSe2 nanosheets. Nat Commun 10:712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eftekhari A (2017) Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J Mater Chem A 5:18299–18325

    Article  CAS  Google Scholar 

  42. Wang J, Zheng H, Xu G, Sun L, Hu D, Lu Z, Liu L, Zheng J, Tao C, Jiao L (2016) Controlled synthesis of two-dimensional 1T-TiSe2 with charge density wave transition by chemical vapor transport. J Am Chem Soc 138(50):16216–16219

    Article  CAS  PubMed  Google Scholar 

  43. Sugawara K, Nakata Y, Shimizu R, Han P, Hitosugi T, Sato T, Takahashi T (2016) Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 10(1):1341–1345

    Article  CAS  PubMed  Google Scholar 

  44. Chen P, Pai WW, Chan YH, Sun WL, Xu CZ, Lin DS, Chou MY, Fedorov AV, Chiang TC (2003) Large quantum-spin-hall gap in single-layer 1T′ WSe2. Nat Commun 2018:9

    Google Scholar 

  45. Qian J, Li Z, Guo X, Li Y, Peng W, Zhang G, Zhang F, Fan X (2018) CoP nanoparticles combined with WSe2 nanosheets: an efficient hybrid catalyst for electrocatalytic hydrogen evolution reaction. Ind Eng Chem Res 57(2):483–489

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The OER study on Co/TiO2 is based on work performed by the Liquid Sunlight Alliance, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under Award Number DE-SC0021266. The HER study on chalcogenides was supported by the NSF (CBET-2005250, program manager Robert McCabe)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Goddard III.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goddard, W.A., Song, J. Grand Canonical Quantum Mechanics with Applications to Mechanisms and Rates for Electrocatalysis. Top Catal 66, 1171–1177 (2023). https://doi.org/10.1007/s11244-023-01794-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01794-8

Keywords

Navigation