Skip to main content
Log in

A Comparative Study of the NH3-SCR Activity of Cu/SSZ-39 and Cu/SSZ-13 with Similar Cu/Al Ratios

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

SSZ-13 and SSZ-39 zeolites were synthesized, then were with Cu ion-exchanged to obtain catalysts with similar Cu content and tested during NO selective catalytic reduction with NH3 (NH3-SCR), in order to investigate the effect of two zeolites with similar structures in NH3-SCR. Both catalysts were very active in the 150–600 °C temperature range. It was necessary to use high space velocity (520,000 h−1) to properly determine the activity during NH3-SCR of our catalysts in the 150–600 °C temperature range. At higher space velocity, a complete picture of the reactivity of each catalyst was revealed. The 2.5/SSZ-13 catalyst was observed to have a higher NO activity per Cu than 3.7/SZZ-39. The conversion-temperature traces were different, with a “Seagull shape” present in the 3.7/SSZ-39 catalyst. This difference seems to be linked to variations in the Cu exchange level and the distribution of Cu species between both zeolitic structures. The activation energy and preexponential factors calculated assuming a pseudo-first-order reaction during SCR start were also different, presumably reflecting minor variations in the active Cu-zeolite bonding. Measurements by TPD- NH3 gave a similar amount of NH3 adsorbed in both materials (~ 0.14 mmol NH3/g), but the temperature at the maximum desorption rate was different (430 °C-2.5/SSZ-13 and 290 °C-3.7/SSZ-39); this is related to differences in Cu content. Our UV–VIS-NIR data show variations in the distribution of Cu species because of the reaction. Dimeric Cu sites and Cu2+ were significant in both catalysts after the reaction. The Cu content and the structure of the active Cu sites are significant factors determining the activity variations as a function of temperature and in understanding the activity of these small pore zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Colvile RN, Hutchinson EJ, Mindell JS, Warren RF (2001) The transport sector as a source of air pollution. Atmos Environ 35(9):1537–1565

    Article  CAS  Google Scholar 

  2. Rigas ML, Ultman JS, Ben-Jebria A (1997) Longitudinal distribution of ozone absorption in the lung: effects of nitrogen dioxide, sulfur dioxide, and ozone exposures. Arch Environ Health 52:173–178. https://doi.org/10.1080/00039899709602883

    Article  CAS  PubMed  Google Scholar 

  3. Fedeyko JM, Chen H-Y, Ballinger TH et al (2009) Development of thermally durable Cu/SCR catalysts. Diesel Exhaust Emiss Control 2009:367–373. https://doi.org/10.4271/2009-01-0899

    Article  Google Scholar 

  4. Busca G (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B Environ 18:1–36. https://doi.org/10.1016/S0926-3373(98)00040-X

    Article  CAS  Google Scholar 

  5. Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449. https://doi.org/10.1016/S0920-5861(02)00384-X

    Article  CAS  Google Scholar 

  6. Ruggeri MP, Grossale A, Nova I et al (2012) FTIR in situ mechanistic study of the NH 3NO/NO 2 “fast SCR” reaction over a commercial Fe-ZSM-5 catalyst. Catal Today 184(1):107–114

    Article  CAS  Google Scholar 

  7. Joshi SY, Kumar A, Luo J et al (2015) Combined experimental and kinetic modeling study of the bi-modal NOx conversion profile on commercial Cu-SAPO-34 catalyst under standard SCR conditions. Appl Catal B Environ 165:27–35. https://doi.org/10.1016/j.apcatb.2014.09.060

    Article  CAS  Google Scholar 

  8. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl Catal B Environ 102:441–448. https://doi.org/10.1016/j.apcatb.2010.12.022

    Article  CAS  Google Scholar 

  9. Gao F, Szanyi J (2018) On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl Catal A Gen 560:185–194. https://doi.org/10.1016/j.apcata.2018.04.040

    Article  CAS  Google Scholar 

  10. Kwak JH, Tonkyn RG, Kim DH et al (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J Catal 275:187–190. https://doi.org/10.1016/j.jcat.2010.07.031

    Article  CAS  Google Scholar 

  11. Fickel DW, Lobo RF (2010) Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD. J Phys Chem C 114:1633–1640. https://doi.org/10.1021/jp9105025

    Article  CAS  Google Scholar 

  12. Corma A, Moliner M, Martin N, Boruntea CR (2015) Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chem Commun. https://doi.org/10.1039/C5CC03200H

    Article  Google Scholar 

  13. Kwak JH, Tran D, Burton SD et al (2012) Effects of hydrothermal aging on NH 3-SCR reaction over Cu/zeolites. J Catal 287:203–209. https://doi.org/10.1016/j.jcat.2011.12.025

    Article  CAS  Google Scholar 

  14. Albarracin-Caballero JD, Khurana I, Di Iorio JR et al (2017) Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NO x with ammonia. React Chem Eng 2:168–179. https://doi.org/10.1039/C6RE00198J

    Article  CAS  Google Scholar 

  15. Gao F, Mei D, Wang Y et al (2017) Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis. J Am Chem Soc 139:4935–4942. https://doi.org/10.1021/jacs.7b01128

    Article  CAS  PubMed  Google Scholar 

  16. Moliner M, Franch C, Palomares E et al (2012) Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem Commun 48:8264. https://doi.org/10.1039/c2cc33992g

    Article  CAS  Google Scholar 

  17. Shan Y, Shan W, Shi X et al (2020) A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Appl Catal B Environ 264:118511. https://doi.org/10.1016/j.apcatb.2019.118511

    Article  CAS  Google Scholar 

  18. Association IZ CHA: XRD pattern. http://america.iza-structure.org/IZA-SC/pow_pat.php?STC=CHA&ID=CHA_0. Accessed 29 Oct 2017

  19. AEI: framework type. http://america.iza-structure.org/IZA-SC/framework.php?STC=AEI. Accessed 21 Mar 2018

  20. Zones SI, Materials S, Recovery P, et al (2001) CHA SSZ-13. In: Verified Syntheses of Zeolitic Materials. pp 126–128

  21. Susan T. Evans, Gregory S. Lee, Yumi Nakagawa SIZ (1999) Zeolite SSZ-39. Us5958370 a

  22. Pham TD, Liu Q, Lobo RF (2013) Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir 29:832–839. https://doi.org/10.1021/la304138z

    Article  CAS  PubMed  Google Scholar 

  23. Lippens BC, Linsen BG, Boer JH, d. (1964) Studies on pore systems in catalysts I. the adsorption of nitrogen; apparatus and calculation. J Catal 3:32–37. https://doi.org/10.1016/0021-9517(64)90089-2

    Article  CAS  Google Scholar 

  24. López-Curiel JC, Hernández-Salgado GI, Hernández-Terán ME, Fuentes GA (2021) On the structure-activity relationship for no-scr with nh3 catalyzed by cu-exchanged natural chabazite and ssz-13. J Mex Chem Soc. https://doi.org/10.29356/jmcs.v65i1.1267

    Article  Google Scholar 

  25. Gao F, Washton NM, Wang Y et al (2015) Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: implications for the active Cu species and the roles of Brønsted acidity. J Catal 331:25–38. https://doi.org/10.1016/j.jcat.2015.08.004

    Article  CAS  Google Scholar 

  26. Kwak JH, Tran D, Szanyi J et al (2012) The effect of copper loading on the selective catalytic reduction of nitric oxide by ammonia over Cu-SSZ-13. Catal Lett 142:295–301. https://doi.org/10.1007/s10562-012-0771-y

    Article  CAS  Google Scholar 

  27. Gao F, Walter ED, Kollar M et al (2014) Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J Catal 319:1–14. https://doi.org/10.1016/j.jcat.2014.08.010

    Article  CAS  Google Scholar 

  28. Gao F, Walter ED, Washton NM et al (2015) Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: solid-state ion exchange and one-pot synthesis. Appl Catal B Environ 162:501–514. https://doi.org/10.1016/j.apcatb.2014.07.029

    Article  CAS  Google Scholar 

  29. Wang L, Gaudet JR, Li W, Weng D (2013) Migration of Cu species in Cu/SAPO-34 during hydrothermal aging. J Catal 306:68–77. https://doi.org/10.1016/j.jcat.2013.06.010

    Article  CAS  Google Scholar 

  30. Zhang T, Qiu F, Chang H et al (2016) Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods. Catal Sci Technol 6:6294–6304. https://doi.org/10.1039/C6CY00737F

    Article  CAS  Google Scholar 

  31. Prodinger S, Derewinski MA, Wang Y et al (2017) Sub-micron Cu/SSZ-13: synthesis and application as selective catalytic reduction (SCR) catalysts. Appl Catal B Environ 201:461–469. https://doi.org/10.1016/j.apcatb.2016.08.053

    Article  CAS  Google Scholar 

  32. Beale AM, Gao F, Lezcano-Gonzalez I et al (2015) Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials. Chem Soc Rev 44:7371–7405. https://doi.org/10.1039/C5CS00108K

    Article  CAS  PubMed  Google Scholar 

  33. Niwa M, Nishikawa S, Katada N (2005) IRMS-TPD of ammonia for characterization of acid site in β-zeolite. Microporous Mesoporous Mater 82:105–112. https://doi.org/10.1016/j.micromeso.2005.03.002

    Article  CAS  Google Scholar 

  34. Lezcano-Gonzalez I, Deka U, Arstad B et al (2014) Determining the storage, availability and reactivity of NH 3 within Cu-Chabazite-based ammonia selective catalytic reduction systems. Phys Chem Chem Phys 16:1639–1650. https://doi.org/10.1039/C3CP54132K

    Article  CAS  PubMed  Google Scholar 

  35. Wang D, Zhang L, Kamasamudram K, Epling WS (2013) In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34. ACS Catal 3:871–881. https://doi.org/10.1021/cs300843k

    Article  CAS  Google Scholar 

  36. Sjövall H, Blint RJ, Olsson L (2009) Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Appl Catal B Environ 92:138–153. https://doi.org/10.1016/j.apcatb.2009.07.020

    Article  CAS  Google Scholar 

  37. Mihai O, Widyastuti CR, Andonova S et al (2014) The effect of Cu-loading on different reactions involved in NH 3-SCR over Cu-BEA catalysts. J Catal 311:170–181. https://doi.org/10.1016/j.jcat.2013.11.016

    Article  CAS  Google Scholar 

  38. Martín García NMGD (2017) Preparación de zeolitas de poro pequeño con control de sus propiedades físico-químicas para su aplicación en catálisis. Universidad Politécnica de Valencia, València

    Book  Google Scholar 

  39. Paolucci C, Khurana I, Parekh AA et al (2017) Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357(1008):898–903. https://doi.org/10.1126/science.aan5630

    Article  CAS  PubMed  Google Scholar 

  40. Negri C, Signorile M, Porcaro NG et al (2019) Dynamic CuII/CuI speciation in Cu-CHA catalysts by in situ diffuse reflectance UV–vis-NIR spectroscopy. Appl Catal A Gen 578:1–9. https://doi.org/10.1016/j.apcata.2019.03.018

    Article  CAS  Google Scholar 

  41. Giordanino F, Vennestrøm PNR, Lundegaard LF et al (2013) Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Dalton Trans 42:12741–12761. https://doi.org/10.1039/c3dt50732g

    Article  CAS  PubMed  Google Scholar 

  42. Oord R, Schmidt JE, Weckhuysen BM (2018) Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NOxwith NH3. Catal Sci Technol 8:1028–1038. https://doi.org/10.1039/c7cy02461d

    Article  CAS  Google Scholar 

  43. Du J, Shan Y, Sun Y et al (2021) Unexpected increase in low-temperature NH3-SCR catalytic activity over Cu-SSZ-39 after hydrothermal aging. Appl Catal B Environ 294:120237. https://doi.org/10.1016/j.apcatb.2021.120237

    Article  CAS  Google Scholar 

  44. Fahami AR, Günter T, Doronkin DE et al (2019) The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NO: X conversion profile during NH3-SCR. React Chem Eng 4:1000–1018. https://doi.org/10.1039/c8re00290h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CONACYT for financial support through grants CB-166363 and 302298. G.I. Hernández-Salgado and J.C López-Curiel thank CONACYT for their graduate fellowships. We thank Prof. Raul Lobo’s Group at Univ. of Delaware for their help in the synthesis of zeolites and SACHEM Inc. for the SDA. UAM-Iztapalapa supported this work.

Funding

Gustavo A. Fuentes acknowledges the support of CONACyT and UAM for the purchase and maintenance of the NOx analyzer. G.I. Hernández-Salgado and J.C López-Curiel thank CONACYT for their graduate fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriela I. Hernández-Salgado or Gustavo A. Fuentes.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests or personal relationships that could appear to have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Salgado, G.I., López-Curiel, J.C. & Fuentes, G.A. A Comparative Study of the NH3-SCR Activity of Cu/SSZ-39 and Cu/SSZ-13 with Similar Cu/Al Ratios. Top Catal 65, 1495–1504 (2022). https://doi.org/10.1007/s11244-022-01696-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01696-1

Keywords

Navigation