Skip to main content
Log in

Addition of Cerium to Alumina-Supported NiMo Catalysts for Dibenzothiophene Hydrodesulfurization Application

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present study, the influence of adding cerium oxide to NiMo/Al2O3 hydrodesulfurization (HDS) catalysts was herein analyzed through the impregnation of cerium sulfate at the surface of an Al2O3 support obtained by a sol–gel method at two different Ce contents (1 and 5 mol% as CeO2). The cerium-containing Al2O3 supports were then impregnated with Ni(NO3)2 and (NH4)6Mo7O24 precursors in aqueous solutions at pH 7 or pH 9 before being dried at 120 °C for 4 h and finally calcined under air at 400 °C for 4 h. The as-obtained NiMo/Ce–Al2O3 catalysts were characterized at their oxide state using UV–Vis diffuse reflectance, Raman and Infrared spectroscopies after each preparation step. Catalysts were also characterized at the sulfide state by pyridine adsorption followed by infrared spectroscopy. The sulfide catalysts were then evaluated in the hydrodesulfurization of dibenzothiophene (DBT). Results show that the pH of impregnation used influences more the final HDS activity than the amount of Ce with an optimum observed using 1 mol % and a pH of impregnation of 9. The activity achieved is then 62% higher than for a NiMo/Al2O3 reference catalyst. The analysis of both Raman and UV–Vis spectroscopy results show that impregnation under basic conditions help to maximize the dispersion of the CeO2 phase onto the alumina support improving substantially the final HDS activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Omer AM (2008) Renew Sust Energ Rev 12:2265–2300

    Article  CAS  Google Scholar 

  2. Arora NK (2018) Environ Sustain 1:1–2

    Article  Google Scholar 

  3. Asir M, Muneer T (2007) Renew Sust Energ Rev 11:1388–1413

    Article  Google Scholar 

  4. Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153:1–68

    Article  CAS  Google Scholar 

  5. Oyama ST, Gott T, Zhao H, Lee YK (2009) Catal Today 143:94–107

    Article  CAS  Google Scholar 

  6. Speight JG (2011) Hydrotreating and desulfurization, The Refinery of the Future, 1st ed.; William Andrew, Applied Science Publishers, Elsevier, UK. ISBN 978-0-8155-2041-2

  7. Gates BC, Topsøe H (1997) Polyhedron 16:3213–3217

    Article  CAS  Google Scholar 

  8. Speight JG (2004) Catal Today 98:55–60

    Article  CAS  Google Scholar 

  9. Song C (2003) Catal Today 86:211–263

    Article  CAS  Google Scholar 

  10. Bello SS, Wang C, Zhang M, Gao H, Han Z, Shi L, Su F, Xu G (2021) Energy Fuels 35:10998–11016

    Article  CAS  Google Scholar 

  11. Breysse M, Djega-Mariadassou G, Pessayre S, Geantet C, Vrinat M, Pérot G, Lemaire M (2003) Catal Today 84:129–138

    Article  CAS  Google Scholar 

  12. Song C, Ma X (2003) Appl Catal B 41:207–238

    Article  CAS  Google Scholar 

  13. Ho TC, McConnachie JM (2011) J Catal 277:117–122

    Article  CAS  Google Scholar 

  14. Bej SK, Maity SK, Turaga UD (2004) Energy Fuels 18:1227–1237

    Article  CAS  Google Scholar 

  15. Topsøe NY, Topsøe H (1983) J Catal 84:386–401

    Article  Google Scholar 

  16. Fan Y, Xiao H, Shi G, Liu H, Qian Y, Wang T, Gong G, Bao X (2011) J Catal 279:27–35

    Article  CAS  Google Scholar 

  17. Bui NQ, Geantet C, Berhault G (2015) J Catal 330:374–386

    Article  CAS  Google Scholar 

  18. Wang H, Fan Y, Shi G, Liu H, Bao X (2008) J Catal 260:119–127

    Article  CAS  Google Scholar 

  19. Koizumi N, Hamabe Y, Yoshida S, Yamada M (2010) Appl Catal A 383:79–88

    Article  CAS  Google Scholar 

  20. Bui NQ, Geantet C, Berhault G (2019) Appl Catal A 572:185–196

    Article  CAS  Google Scholar 

  21. López-Benítez A, Guevara-Lara A, Berhault G (2019) ACS Catal 9:6711–6727

    Article  CAS  Google Scholar 

  22. Mogica-Betancourt JC, López-Benítez A, Montiel-López JR, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A (2014) J Catal 313:9–23

    Article  CAS  Google Scholar 

  23. Guevara-Lara A, Álvarez A, Vrinat M (2008) Catal Lett 126:268–274

    Article  CAS  Google Scholar 

  24. Guevara-Lara A, Bacaud R, Vrinat M (2007) Appl Catal A 328:99–108

    Article  CAS  Google Scholar 

  25. Li Y, Pan D, Yu C, Fan Y, Bao X (2012) J Catal 286:124–136

    Article  CAS  Google Scholar 

  26. Rashidi F, Sasaki T, Rashidi AM, Kharat AN, Jozani KJ (2013) J Catal 299:321–335

    Article  CAS  Google Scholar 

  27. Chen W, Maugé F, van Gestel J, Nie H, Li D, Long X (2013) J Catal 304:47–62

    Article  CAS  Google Scholar 

  28. Sun M, Nicosia D, Prins R (2003) Catal Today 86:173–189

    Article  CAS  Google Scholar 

  29. López-Benítez A, Berhault G, Guevara-Lara A (2016) J Catal 344:59–76

    Article  CAS  Google Scholar 

  30. López-Benítez A, Berhault G, Guevara-Lara A (2017) Appl Catal B 213:28–41

    Article  CAS  Google Scholar 

  31. López-Benítez A, Berhault G, Burel L, Guevara-Lara A (2017) J Catal 354:197–212

    Article  CAS  Google Scholar 

  32. Vázquez-Garrido I, López-Benítez A, Berhault G, Guevara-Lara A (2019) Fuel 236:55–64

    Article  CAS  Google Scholar 

  33. López-Benítez A, Berhault G, Silva-Rodrigo R, Rodríguez-Ávila JA, Vrinat M, Guevara-Lara A (2019) Catal Lett 149:2656–2670

    Article  CAS  Google Scholar 

  34. Swartz SL (2002) J Am Chem Soc 124:12923–12924

    Article  CAS  Google Scholar 

  35. Bonnetot B, Rakic V, Yuzhakova T, Guimon C, Auroux A (2008) Chem Mater 20:1585–1596

    Article  CAS  Google Scholar 

  36. Duarte RB, Safonova OV, Krumeich F, Makosch M, van Bokhoven JA (2013) ACS Catal 3:1956–1964

    Article  CAS  Google Scholar 

  37. Ruiz-Puigdollers A, Schlexer P, Tosoni S, Pacchioni G (2017) ACS Catal 7(10):6493–6513

    Article  CAS  Google Scholar 

  38. Laosiripojana N, Assabumrungrat S (2005) Appl Catal B 60:107–116

    Article  CAS  Google Scholar 

  39. Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Phys Rev Lett 102(026101):1–4

    Google Scholar 

  40. Trovarelli A (2002) In: GJ Hutchings (ed) Catalysis by ceria and related materials. Catalytic Science Series, vol 2. Imperial College, pp 15–45

  41. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367

    Article  CAS  Google Scholar 

  42. Trovarelli A (1996) Catal Rev 38:439–520

    Article  CAS  Google Scholar 

  43. Agarwal S, Chowdari RK, Hita I, Heeres HJ (2017) ACS Suitable Chem Eng 5:2668–2678

    Article  CAS  Google Scholar 

  44. Roy T, Rousseau J, Daudin A, Pirggruber G, Lebeau B, Luc Blin J, Brunet S (2021) Catal Today 377:17–25

    Article  CAS  Google Scholar 

  45. Mullins DR (2015) Surf Sci Rep 20:42–85

    Article  CAS  Google Scholar 

  46. Bamwenda GR, Sayama K, Arakawa H (1999) Chem Lett 28:1047–1048

    Article  Google Scholar 

  47. Lustemberg PG, Bosco MV, Bonivardi A, Busnengo HF, Ganduglia-Pirovano M (2015) J Phys Chem C 119:21452–21464

    Article  CAS  Google Scholar 

  48. Subhan F, Aslam S, Yan Z, Naeem M, Ullah R, Etim UJ (2018) Chem Eng J 348:319–326

    Article  CAS  Google Scholar 

  49. Martin D, Duprez D (1996) J Phys Chem 100:9429–9438

    Article  CAS  Google Scholar 

  50. Prabaharan DMDM, Sadaiyandi K, Mahendran M, Sagadevan S (2016) Mater Res 19:478–482

    Article  Google Scholar 

  51. Gulková D, Vít Z (1995) Appl Catal A 125:61–70

    Article  Google Scholar 

  52. Schacht P, Hernández G, Cedeño L, Mendoza JH, Ramírez S, García L, Ancheyta J (2003) Energy Fuels 17:81–86

    Article  CAS  Google Scholar 

  53. Jiang M, Wang B, Lv J, Wang H, Li Z, Ma X, Qin S, Sun Q (2013) Appl Catal A 466:224–232

    Article  CAS  Google Scholar 

  54. Martínez-Arias A, Fernández-García M, Salamanca LN, Valenzuela RX, Conesa JC, Soria J (2000) J Phys Chem B 104:4038–4046

    Article  CAS  Google Scholar 

  55. Gorte RJ (2010) AIChE J 56:1126–1135

    CAS  Google Scholar 

  56. Reddy BM, Bharali P, Saikia P, Park SE, van den Berg MWE, Muhler M, Grünert W (2008) J Phys Chem C 112:11729–11737

    Article  CAS  Google Scholar 

  57. Yuzhakova T, Rakic V, Guimon C, Auroux A (2007) Chem Mater 19:2970–2981

    Article  CAS  Google Scholar 

  58. Yu P, Ke M, Liu Q, Yan XM, Li JP (2016) RSC Adv 6:96662–96668

    Article  CAS  Google Scholar 

  59. Eijsbouts S, van den Oetelaar LCA, van Puijenbroek RR (2005) J Catal 229:352–364

    Article  CAS  Google Scholar 

  60. Thomazeau C, Martin V, Afanasiev P (2000) Appl Catal A 199:61–72

    Article  CAS  Google Scholar 

  61. Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964–4970

    Article  CAS  Google Scholar 

  62. Berhault G, Lacroix M, Breysse M, Maugé F, Lavalley JC, Nie H (1998) J Catal 178:555–565

    Article  CAS  Google Scholar 

  63. Breysse M, Berhault G, Kasztelan S, Lacroix M, Maugé F, Pérot G (2001) Catal Today 66:15–22

    Article  CAS  Google Scholar 

  64. Emeis CA (1993) J Catal 141:347–354

    Article  CAS  Google Scholar 

  65. Contreras-Valdez Z, Mogica-Betancourt JC, Alvarez-Hernández A, Guevara-Lara A (2013) Fuel 106:519–527

    Article  CAS  Google Scholar 

  66. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing SW (2015) Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  67. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207–219

    Article  CAS  Google Scholar 

  68. Hunter RJ (1981) In: Ottewill RH, Rowell R (eds) Zeta potential in colloid science: principles and applications. Academic Press, London

  69. Kosmulski M (2011) J Colloid Interface Sci 353:1–15

    Article  CAS  PubMed  Google Scholar 

  70. Hegde S, Babu SV (2004) Electrochem Solid State Lett 7:G316–G318

    Article  CAS  Google Scholar 

  71. Parks AG (1965) Chem Rev 65:177–198

    Article  CAS  Google Scholar 

  72. Waqif M, Bazin P, Saur O, Lavalley JC, Blanchard G, Touret O (1997) Appl Catal B 11:193–205

    Article  CAS  Google Scholar 

  73. Jindal A, Hegde S, Badu SV (2003) J Electrochem Soc 150:G314–G318

    Article  CAS  Google Scholar 

  74. Zaki MI, Hussein GAM, Mansour SAA, Ismail HM, Mekhemer GAH (1997) Colloid Surf A 127:47–56

    Article  CAS  Google Scholar 

  75. Bensalem A, Muller JC, Bozon-Verduraz F (1992) J Chem Soc Faraday Trans 81:153–154

    Article  Google Scholar 

  76. Bensalem A, Bozon-Verduraz F, Delamar MD, Bugli G (1995) Appl Catal A 121:81–93

    Article  CAS  Google Scholar 

  77. Twu J, Chuang CJ, Chang KI, Yang CH, Chen KH (1997) Appl Catal B 12:309–324

    Article  CAS  Google Scholar 

  78. Kovács M, Valicsek Z, Tóth J, Hajba L, Makó E, Halmos P, Földényi R (2009) Colloid Surf A 352:56–62

    Article  CAS  Google Scholar 

  79. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) J Phys Chem B 107:5162–5167

    Article  CAS  Google Scholar 

  80. Trovarelli A, Zamar F, Llorca J, de Leitenburg C, Dolcetti G, Kiss JT (1997) J Catal 169:490–502

    Article  CAS  Google Scholar 

  81. Thielemann JP, Ressler T, Walter A, Tzolova-Müller G, Hess C (2011) Appl Catal A 399:28–34

    Article  CAS  Google Scholar 

  82. Fournier M, Louis C, Che M, Chaquin P, Masure D (1989) J Catal 119:400–414

    Article  CAS  Google Scholar 

  83. Jeziorowski H, Knozinger H (1979) J Phys Chem 83:1166–1173

    Article  CAS  Google Scholar 

  84. Iova F, Trutia A (2000) Opt Mat 13:455–458

    Article  CAS  Google Scholar 

  85. Jocono ML, Schavello M, Cimino A (1971) J Phys Chem 75:1044–1050

    Article  Google Scholar 

  86. Lepetit C, Che M (1996) J Phys Chem 100:3137–3143

    Article  CAS  Google Scholar 

  87. Carter JC, Khulbe PK, Gray J, Van Zee JW, Angel SM (2004) Anal Chim Acta 514:241–245

    Article  CAS  Google Scholar 

  88. Cheng CP, Schrader GL (1979) J Catal 60:276–294

    Article  CAS  Google Scholar 

  89. Hu H, Wachs IE, Bare SR (1995) J Phys Chem 99:10897–10910

    Article  CAS  Google Scholar 

  90. Seguin L, Figlarz M, Cavagnat R, Lassegues JC (1995) Spectrochim Acta A 51:1323–1344

    Article  Google Scholar 

  91. Vuurman MA, Wachs IE (1992) J Phys Chem 96:5008–5016

    Article  CAS  Google Scholar 

  92. Chang SC, Leugers MA, Bare SR (1992) J Phys Chem 96:10358–10365

    Article  CAS  Google Scholar 

  93. Deo G, Wachs IE (1991) J Phys Chem 95:5890–5895

    Article  Google Scholar 

  94. Barzetti T, Selli E, Moscotti D, Forni L (1996) J Chem Soc Faraday Trans 92:1401–1407

    Article  CAS  Google Scholar 

  95. Busca G (1998) Catal Today 41:191–206

    Article  CAS  Google Scholar 

  96. Topsøe NY, Topsøe H (1993) J Catal 139:641–651

    Article  Google Scholar 

  97. Bataille F, Lemberton JL, Michaud P, Pérot G, Vrinat M, Lemaire M, Schulz E, Breysse M, Kasztelan S (2000) J Catal 191:409–422

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acela López-Benítez is very grateful to CONACYT through the “Fondo Sectorial CONACYT-Secretaría de Energía –Hidrocarburos” for the Postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfredo Guevara-Lara or Rebeca Silva-Rodrigo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guevara-Lara, A., López-Benítez, A., Berhault, G. et al. Addition of Cerium to Alumina-Supported NiMo Catalysts for Dibenzothiophene Hydrodesulfurization Application. Top Catal 65, 1286–1300 (2022). https://doi.org/10.1007/s11244-022-01682-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01682-7

Keywords

Navigation