Skip to main content
Log in

A New Insight Over Oxygen Storage Capacity, SMSI, and Dispersion Effects on VOC Oxidation using Pt/Al2O3–CeO2 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, a correlation between ceria loading (0, 2, 5, 10, 20, 50 wt%) in Pt/Al2O3-CeO2 catalysts with the catalytic activity of 1-butanol and toluene oxidation is presented. The materials were characterized by TPR, CO chemisorption and TEM; additionally, the capacity to store/release oxygen was determined with the OBC technique in a transient state. The interaction of the CeO2 species with the active phase was obtained by TPR experiments, which were complemented with CO chemisorption and TEM analyses, to understand the SMSI effect and Pt dispersion in the different catalysts. A complex relation between SMSI, Pt particle size and the capacity to store/release oxygen with the activity in VOC oxidation was found. It is concluded that using Pt/Al2O3–CeO2 in deep oxidation of 1-butanol and toluene, the light-off temperature (50% conversion) is reduced with higher values of OBC and Pt dispersion, but to reach 100% of toluene removal, it is necessary to have lower SMSI effect and lower Pt dispersion. The results show that the best catalytic performance, for 50 and 100% conversion, was obtained with the material with 5% CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Graph 1
Graph 2

Similar content being viewed by others

References

  1. Yang C, Miao C, Pi G (2019) Y, Xia Q Wu J Li Z Xiao. J Chem Eng J 370:1128–1153. https://doi.org/10.1016/j.cej.2019.03.232

    Article  CAS  Google Scholar 

  2. Guo Y, Wen M, Li G, An T (2021) Appl Catal B 281:119447. https://doi.org/10.1016/j.apcatb.2020.119447

    Article  CAS  Google Scholar 

  3. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2018) Chem Rev 119:4471. https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  Google Scholar 

  4. Zhang Z, Jiang Z, Shangguan W (2016) Catal Today 264:270–278. https://doi.org/10.1016/j.cattod.2015.10.040

    Article  CAS  Google Scholar 

  5. Yang H, Deng J, Liu Y, Xie S, Wu Z, Dai H (2016) J Mol Catal A: Chem 414:9. https://doi.org/10.1016/j.molcata.2015.12.010

    Article  CAS  Google Scholar 

  6. Wang Z, Yang H, Liu R, Xie S, Liu Y, Dai H, Huang H, Deng H (2020) J Hazard Mater 392:122258. https://doi.org/10.1016/j.jhazmat.2020.122258

    Article  CAS  PubMed  Google Scholar 

  7. Yang D, Fu S, Huang S, Deng W, Wang Y, Guo L, Ishihara T (2019) Microporous Mesoporous Mater 296:109802. https://doi.org/10.1016/j.micromeso.2019.109802

    Article  CAS  Google Scholar 

  8. Rahmani F, Haghighi M, Estifaee P (2014) Microporous Mesoporous Mater 185:213–223. https://doi.org/10.1016/j.micromeso.2013.11.019

    Article  CAS  Google Scholar 

  9. Sedjame H, Fontaine C, Lafaye G, Barbier J (2014) Appl Catal B 144:233. https://doi.org/10.1016/j.apcatb.2013.07.022

    Article  CAS  Google Scholar 

  10. Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) J Hazard 186:1445–1454. https://doi.org/10.1016/j.jhazmat.2010.12.034

    Article  CAS  Google Scholar 

  11. Kritsanaviparkpor E, Baena-Moreno FM, Reina TR (2021) Chemistry 3:630–646. https://doi.org/10.3390/chemistry3020044

    Article  CAS  Google Scholar 

  12. Rana PH, Parikh PA (2018) Chem Eng Res Des 137:478–487. https://doi.org/10.1016/j.cherd.2018.08.004

    Article  CAS  Google Scholar 

  13. Tanabe T, Nagai Y, Hirabayashi T, Takagi N, Dohmae K, Takahashi N, Matsumoto S, Shinjoh H, Kondo JN, Schouten JC, Brongersma HH (2009) Appl Catal A: Gen 370:108–113. https://doi.org/10.1016/j.apcata.2009.09.030

    Article  CAS  Google Scholar 

  14. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Science 211:1121. https://doi.org/10.1126/science.211.4487.1121

    Article  CAS  PubMed  Google Scholar 

  15. Pérez-Pastenes H, Barrales-Cortés CA, Viveros T (2017) Int J Chem Reactor Eng 15:620170143. https://doi.org/10.1515/ijcre-2017-0143

    Article  CAS  Google Scholar 

  16. Yao HC, Yu Yao YF (1984) J Catal 86:254–265. https://doi.org/10.1016/0021-9517(84)90371-3

    Article  CAS  Google Scholar 

  17. Bernal S, Blanco G, Cauqui MA, Corchado P, Pintado JM, Rodríguez-Izquierdo JM (1997). Chem Commun. https://doi.org/10.1039/A702617J

    Article  Google Scholar 

  18. Spenadel L, Boudart M (1960) J Phys Chem 64(2):204–207. https://doi.org/10.1021/j100831a004

    Article  CAS  Google Scholar 

  19. Scholten JJF, Pijpers AP, Hustings AML (1985) Catal Rev: Sci Eng 27(1):151–206. https://doi.org/10.1080/01614948509342359

    Article  CAS  Google Scholar 

  20. Dawody J, Eurenius L, Abdulhamid H, Skoglundh M, Olsson E, Fridell E (2005) Appl Catal A 296:157–168. https://doi.org/10.1016/j.apcata.2005.07.060

    Article  CAS  Google Scholar 

  21. Briot P, Auroux A, Jones D, Primet M (1990) Appl Catal 59:141–152. https://doi.org/10.1016/S0166-9834(00)82193-4

    Article  CAS  Google Scholar 

  22. Gatica JM, Baker RT, Fornasiero P, Bernal S, Kaspar J (2001) J Phys Chem B 105:1191–1199. https://doi.org/10.1021/jp003632g

    Article  CAS  Google Scholar 

  23. Jansen WPA, Harmsen JMA, Denier A, Gon vd, Hoebink JHBJ, Schouten JC, Brongersma HH (2001) J Catal 204:420–427. https://doi.org/10.1006/jcat.2001.3391

    Article  CAS  Google Scholar 

  24. Trovarelli A (1996) Catal Rev-Sci Eng 5:439–520. https://doi.org/10.1080/01614949608006464

    Article  Google Scholar 

  25. Bernal S, Botana FJ, Calvino JJ, Cifredo GA, Garcia R, Rodriguez-Izquierdo JM (1988) Catal Today 2:653–662. https://doi.org/10.1016/0920-5861(88)85029-6

    Article  CAS  Google Scholar 

  26. Paulis M, Peyrard H, Montes M (2001) J Catal 199:30–40. https://doi.org/10.1006/jcat.2000.3146

    Article  CAS  Google Scholar 

  27. Bensalem A, Muller JC, Tessier D, Bozon-Verduraz F (1996) Journal of Chemical Society. Faraday Trans 92(17):3233–3237. https://doi.org/10.1039/FT9969203233

    Article  CAS  Google Scholar 

  28. Li C, Sakata Y, Arai T, Domen K, Maruya K, Onishi T (1989) Journal of Chemical Society. Faraday Trans 85:1451–1461. https://doi.org/10.1039/F19898501451

    Article  CAS  Google Scholar 

  29. Sanchez MG, Gazquez JL (1987) J Catal 104:120–135. https://doi.org/10.1016/0021-9517(87)90342-3

    Article  CAS  Google Scholar 

  30. Du X, Tang H, Qiao B (2021) Catalysts 11:896. https://doi.org/10.3390/catal11080896

    Article  CAS  Google Scholar 

  31. Hurst NW, Gentry SJ, Jones A, McNicol BD (1982) Catal Rev: Sci Eng 24(2):233–309. https://doi.org/10.1080/03602458208079654

    Article  CAS  Google Scholar 

  32. Pérez-Pastenes H, Núñez-Correa S, Pérez-López G, Ricardez-Sandoval L, Viveros-García T (2021) Revista Mexicana De Ingeniería Química 20(2):1047. https://doi.org/10.24275/rmiq/Cat2360

    Article  Google Scholar 

  33. Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) Catal Today 77:407–417. https://doi.org/10.1016/S0920-5861(02)00383-8

    Article  CAS  Google Scholar 

  34. Liotta LF, Pantaleo G, Macaluso A, Marci G, Gialanella S, Deganello G (2003) J Sol-Gel Sci Technol 28:119–132. https://doi.org/10.1023/A:1025601523304

    Article  CAS  Google Scholar 

  35. Bedrane S, Descorme C, Duprez D (2002) Catal Today 73:233–238. https://doi.org/10.1016/S0920-5861(02)00005-6

    Article  CAS  Google Scholar 

  36. Xia QH, Hidajat K, Kawi S (2001) Catal Today 68:255. https://doi.org/10.1016/S0920-5861(01)00285-1

    Article  CAS  Google Scholar 

  37. Papaefthimiou P, Ioannides T, Verykios XE (1997) Appl Catal B 13:175–184. https://doi.org/10.1016/S0926-3373(96)00103-8

    Article  CAS  Google Scholar 

  38. Roark SE, Cabrera-Fonseca J, Milazzo MC, White JH, Wander JD (2004) J Environ Eng 130:329–337. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:3(329)

    Article  CAS  Google Scholar 

  39. GarettoApesteguı́a TFCR (2000) Catal Today 62(2–3):189–199. https://doi.org/10.1016/S0920-5861(00)00420-X

    Article  Google Scholar 

Download references

Acknowledgements

We thank Universidad Autónoma Metropolitana (UAM), Universidad Veracruzana (UV) and Consejo Nacional de Ciencia y Tecnología (CONACyT) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Pérez-Pastenes or Tomás Viveros-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Pastenes, H., Viveros-García, T. A New Insight Over Oxygen Storage Capacity, SMSI, and Dispersion Effects on VOC Oxidation using Pt/Al2O3–CeO2 Catalysts. Top Catal 65, 1530–1540 (2022). https://doi.org/10.1007/s11244-022-01680-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01680-9

Keywords

Navigation