Skip to main content

Advertisement

Log in

Simultaneous CO2 Photo-Reduction and Water Splitting Over Na2Ti3O7 Deposited with Co and Cu Oxide Cocatalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Powder samples of Na2Ti3O7 were prepared by the solid-state reaction method and deposited with Co3O4 and CuOx by wet impregnation in different concentrations. The structural characterization confirmed the formation of the pure Na2Ti3O7 phase and the presence of the mentioned oxides as clusters of nanoparticles over the surface of the support. The bare Na2Ti3O7 sample exhibited photocatalytic activity for H2 and CO production in water splitting and CO2 reduction, respectively. Meanwhile, adding Co3O4 (5 wt%) improved only CO formation. A particular behavior was observed in samples impregnated with CuOx; for instance, a small amount of CuOx (1 wt%) enhanced H2 generation, while a larger one (5 wt%) promoted the CH4 formation. In the present photocatalytic reaction system, although the Na2Ti3O7 phase slowly transformed to the H2Ti3O7 under illumination, no further changes were observed after this transition. On the other hand, CuO cocatalyst was reduced to Cu2O during the reaction, causing a radical change in the reaction performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Shehzad N, Tahir M, Johari K, Murugesan T (2018) A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J CO2 Util 26:98–122. Doi:https://doi.org/10.1016/j.jcou.2018.04.026

    Article  CAS  Google Scholar 

  2. Kwak BS, Kang M (2015) Photocatalytic reduction of CO2 with H2O using perovskite CaxTiyO3. Appl Surf Sci 337:138–144. Doi:https://doi.org/10.1016/j.apsusc.2015.02.078

    Article  CAS  Google Scholar 

  3. Anzai A, Fukuo N, Yamamoto A, Yoshida H (2017) Highly selective photocatalytic reduction of carbon dioxide with water over silver-loaded calcium titanate. Catal Commun 100:134–138. Doi:https://doi.org/10.1016/j.catcom.2017.06.046

    Article  CAS  Google Scholar 

  4. Shoji S, Yin G, Nishikawa M et al (2016) Photocatalytic reduction of CO2 by CuO nanocluster loaded SrTiO3 nanorod thin film. Chem Phys Lett 658:309–314. Doi:https://doi.org/10.1016/j.cplett.2016.06.062

    Article  CAS  Google Scholar 

  5. Jeyalakshmi V, Mahalakshmy R, Krishnamurthy KR, Viswanathan B (2016) Photocatalytic reduction of carbon dioxide in alkaline medium on La modified sodium tantalate with different co-catalysts under UV–Visible radiation. Catal Today 266:160–167. Doi:https://doi.org/10.1016/J.CATTOD.2015.09.004

    Article  CAS  Google Scholar 

  6. Nakanishi H, Iizuka K, Takayama T et al (2017) Highly active NaTaO3-based photocatalysts for CO2 reduction to form CO using water as the electron donor. ChemSusChem 10:112–118. https://doi.org/10.1002/cssc.201601360

    Article  CAS  PubMed  Google Scholar 

  7. Li P, Ouyang S, Xi G et al (2012) The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3. J Phys Chem C 116:7621–7628. Doi:https://doi.org/10.1021/jp210106b

    Article  CAS  Google Scholar 

  8. Shi H, Zou Z (2012) Photophysical and photocatalytic properties of ANbO3 (A = Na, K) photocatalysts. J Phys Chem Solids 73:788–792. Doi:https://doi.org/10.1016/j.jpcs.2012.01.026

    Article  CAS  Google Scholar 

  9. Pu YC, Chen YC, Hsu YJ (2010) Au-decorated NaxH2–xTi3O7 nanobelts exhibiting remarkable photocatalytic properties under visible-light illumination. Appl Catal B 97:389–397. https://doi.org/10.1016/j.apcatb.2010.04.023

    Article  CAS  Google Scholar 

  10. Ramírez-Salgado J, Djurado E, Fabry P (2004) Synthesis of sodium titanate composites by sol-gel method for use in gas potentiometric sensors. J Eur Ceram Soc 24:2477–2483. Doi:https://doi.org/10.1016/j.jeurceramsoc.2003.07.014

    Article  CAS  Google Scholar 

  11. Cech O, Castkova K, Chladil L et al (2017) Synthesis and characterization of Na2Ti6O13 and Na2Ti6O13/Na2Ti3O7 sodium titanates with nanorod-like structure as negative electrode materials for sodium-ion batteries. J Energy Storage 14:391–398. Doi:https://doi.org/10.1016/J.EST.2017.07.008

    Article  Google Scholar 

  12. Pan H, Lu X, Yu X et al (2013) Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries. Adv Energy Mater 3:1186–1194. Doi:https://doi.org/10.1002/aenm.201300139

    Article  CAS  Google Scholar 

  13. Zhang L, Chen L, Fan X et al (2017) Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J Mater Chem A 5:6178–6185. Doi: https://doi.org/10.1039/C7TA00566K

    Article  CAS  Google Scholar 

  14. Reyes-Miranda J, Garcia-Murillo A, Garrido-Hernández A, de Carrillo-Romo F J (2021) Fast and mild alkaline solvothermal synthesis of nanostructured flower-like Na2Ti3O7 and its methylene blue adsorption capacity. Mater Lett 292:129589. Doi:https://doi.org/10.1016/j.matlet.2021.129589

    Article  CAS  Google Scholar 

  15. Zhao M, Huang J, Guo X et al (2015) Preparation of Na2Ti3O7/titanium peroxide composites and their adsorption property on cationic dyes. J Chem 2015:363405. https://doi.org/10.1155/2015/363405

    Article  CAS  Google Scholar 

  16. Xu C-Y, Wu J, Zhang P et al (2013) Molten salt synthesis of Na2Ti3O7 and Na2Ti6O13 one-dimensional nanostructures and their photocatalytic and humidity sensing properties. CrystEngComm 15:3448. Doi:https://doi.org/10.1039/c3ce27092k

    Article  CAS  Google Scholar 

  17. Song H, Jiang H, Liu T et al (2007) Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n + 1 (A = Li, Na and K). Mater Res Bull 42:334–344. Doi:https://doi.org/10.1016/j.materresbull.2006.05.025

    Article  CAS  Google Scholar 

  18. Vithal M, Rama Krishna S, Ravi G et al (2013) Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-light-driven photocatalysts. Ceram Int 39:8429–8439. Doi:https://doi.org/10.1016/j.ceramint.2013.04.025

    Article  CAS  Google Scholar 

  19. Vattikuti SVP, Anil P, Reddy K, Bandaru N (2018) Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation. Korean J Chem Eng 35:1019–1025. Doi:https://doi.org/10.1007/s11814-017-0355-z

    Article  CAS  Google Scholar 

  20. Garay-Rodríguez LF, Murcia-López S, Andreu T et al (2019) Photocatalytic Hydrogen Evolution Using Bi-Metallic (Ni/Pt) Na2Ti3O7 Whiskers: Effect of the Deposition Order. Catalysts 9:285. Doi:https://doi.org/10.3390/catal9030285

    Article  CAS  Google Scholar 

  21. Liu J, Ding T, Li Z et al (2013) Photocatalytic hydrogen production over In2S3–Pt–Na2Ti3O7 nanotube films under visible light irradiation. Ceram Int 39:8059–8063. Doi:https://doi.org/10.1016/j.ceramint.2013.03.077

    Article  CAS  Google Scholar 

  22. Inoue Y, Kubokawa T, Sato K (1991) Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water. J Phys Chem 95:4059–4063. Doi:https://doi.org/10.1021/j100163a032

    Article  CAS  Google Scholar 

  23. Zhu X, Anzai A, Yamamoto A, Yoshida H (2019) Silver-loaded sodium titanate photocatalysts for selective reduction of carbon dioxide to carbon monoxide with water. Appl Catal B 243:47–56. https://doi.org/10.1016/J.APCATB.2018.10.021

    Article  CAS  Google Scholar 

  24. Ran J, Jaroniec M, Qiao S-Z (2018) Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater 30:1704649. https://doi.org/10.1002/adma.201704649

    Article  CAS  Google Scholar 

  25. Qin S, Xin F, Liu Y et al (2011) Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. J Colloid Interface Sci 356:257–261. Doi:https://doi.org/10.1016/j.jcis.2010.12.034

    Article  CAS  PubMed  Google Scholar 

  26. Fang B, Xing Y, Bonakdarpour A et al (2015) Hierarchical CuO–TiO2 Hollow Microspheres for Highly Efficient Photodriven Reduction of CO2 to CH4. ACS Sustain Chem Eng 3:2381–2388. Doi: https://doi.org/10.1021/acssuschemeng.5b00724

    Article  CAS  Google Scholar 

  27. Pan P, Chen Y, Brichkov AS, Kozik VV (2019) Effects of Co3O4 Cocatalyst on InTaO4 for Photocatalytic Reduction of CO2 to CH3OH under Visible Light Irradiation. Mod Res Catal 08:39–49. Doi: https://doi.org/10.4236/mrc.2019.84004

    Article  CAS  Google Scholar 

  28. Ibarra-Rodríguez LI, Huerta-Flores AM, Torres-Martínez LM (2020) Development of Na2Ti6O13/CuO/Cu2O heterostructures for solar photocatalytic production of low-carbon fuels. Mater Res Bull 122:110679. Doi: https://doi.org/10.1016/j.materresbull.2019.110679

    Article  CAS  Google Scholar 

  29. Vattikuti SVP, Anil P, Reddy K et al (2018) Hydrothermally synthesized Na2Ti3O7 nanotube @ V2O5 heterostructures with improved visible photocatalytic degradation and hydrogen evolution—its photocorrosion suppression. J Alloys Compd 740:574–586. https://doi.org/10.1016/j.jallcom.2017.12.371

    Article  CAS  Google Scholar 

  30. Zaki AH, Naeim AA, EL-Dek SI (2019) Sodium titanate nanotubes for efficient transesterification of oils into biodiesel. Environ Sci Pollut Res 26:36388–36400. Doi: https://doi.org/10.1007/s11356-019-06602-z

    Article  CAS  Google Scholar 

  31. Shirpour M, Cabana J, Doeff M (2013) New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energy Environ Sci 6:2538–2547. Doi: https://doi.org/10.1039/C3EE41037D

    Article  CAS  Google Scholar 

  32. Zhang F, Yuan C, Lu X et al (2012) Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J Power Sources 203:250–256. Doi: https://doi.org/10.1016/j.jpowsour.2011.12.001

    Article  CAS  Google Scholar 

  33. Al-Sabagh AM, Yehia FZ, Eissa AMF et al (2014) Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate). Polym Degrad Stab 110:364–377. Doi:https://doi.org/10.1016/j.polymdegradstab.2014.10.005

    Article  CAS  Google Scholar 

  34. Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7:1–5. Doi: https://doi.org/10.1186/1556-276X-7-70

    Article  CAS  Google Scholar 

  35. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  36. Lin B, Zhou Y, He L et al (2015) Mesoporous CdS-pillared H2Ti3O7 nanohybrids with efficient photocatalytic activity. J Phys Chem Solids 79:66–71. Doi: https://doi.org/10.1016/j.jpcs.2014.12.003

    Article  CAS  Google Scholar 

  37. Bhargava R, Khan S, Ahmad N, Ansari MMN (2018) Investigation of structural, optical and electrical properties of Co3O4 nanoparticles. AIP Conf Proc 1953:30034. https://doi.org/10.1063/1.5032369

    Article  CAS  Google Scholar 

  38. Yang Y, Xu D, Wu Q, Diao P (2016) Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Sci Rep 6:35158. Doi:https://doi.org/10.1038/srep35158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng Y, Lin Y, Xu J et al (2019) Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu2O microspheres for degrading organic pollutants. Appl Surf Sci 366:120–128. Doi: https://doi.org/10.1016/j.apsusc.2015.12.238

    Article  CAS  Google Scholar 

  40. Flores-Flores M, Luévano-Hipólito E, Torres-Martínez LM, Do T-O (2019) CO2 adsorption and photocatalytic reduction over Mg(OH)2/CuO/Cu2O under UV–visible light to solar fuels. Mater Chem Phys 227:90–97. Doi: https://doi.org/10.1016/j.matchemphys.2019.01.062

    Article  CAS  Google Scholar 

  41. Janczarek M, Kowalska E (2017) On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catal 7:317

    Article  Google Scholar 

  42. Garay-Rodríguez LF, Yoshida H, Torres-Martínez LM, Juárez-Ramírez I (2021) Water splitting and carbon dioxide reduction over alkaline-earth tantalate photocatalysts loaded with metal oxide cocatalysts. Int J Hydrog Energy 46:32490–32502. https://doi.org/10.1016/j.ijhydene.2021.07.092

    Article  CAS  Google Scholar 

  43. Gong G, Liu Y, Mao B et al (2016) Mechanism study on the photocatalytic efficiency enhancement of MoS2 modified Zn-AgIn5S8 quantum dots. RSC Adv 6:99023–99033. Doi:https://doi.org/10.1039/c6ra19949f

    Article  CAS  Google Scholar 

  44. Garay-Rodríguez LF, Torres-Martínez LM (2020) Extending the visible-light photocatalytic CO2 reduction activity of K2Ti6O13 with the MxOy (M = Co, Ni and Cu) incorporation. J Mater Sci 31:19248–19265. https://doi.org/10.1007/s10854-020-04461-w

    Article  CAS  Google Scholar 

  45. Sarkar A, Karmakar K, Singh AK et al (2016) Surface functionalized H2Ti3O7 nanowires engineered for visible-light photoswitching, electrochemical water splitting, and photocatalysis. Phys Chem Chem Phys 18:26900–26912. Doi:https://doi.org/10.1039/C6CP05154E

    Article  CAS  PubMed  Google Scholar 

  46. Ibarra-Rodriguez LI, Garay-Rodríguez LF, Torres-Martínez LM (2021) Photocatalytic reduction of CO2 over K2Ti6O13 films. Mater Chem Phys 270:124836. Doi: https://doi.org/10.1016/j.matchemphys.2021.124836

    Article  CAS  Google Scholar 

  47. Shao D, Zheng L, Feng D et al (2018) TiO2–P3HT:PCBM photoelectrochemical tandem cells for solar-driven overall water splitting. J Mater Chem A 6:4032–4039. Doi: https://doi.org/10.1039/C7TA09367E

    Article  CAS  Google Scholar 

  48. Nan F, Li P, Li J et al (2018) Experimental and Theoretical Evidence of Enhanced Visible Light Photoelectrochemical and Photocatalytic Properties in MoS2/TiO2 Nanohole Arrays. J Phys Chem C 122:15055–15062. Doi: https://doi.org/10.1021/acs.jpcc.8b01574

    Article  CAS  Google Scholar 

  49. Rakotovelo G, Moussounda PS, Haroun MF et al (2007) DFT study of BaTiO3 (001) surface with O and O2 adsorption. Eur Phys J B 57:291–297. Doi: https://doi.org/10.1140/epjb/e2007-00163-x

    Article  CAS  Google Scholar 

  50. Munuera G, Rives-Arnau V, Saucedo A (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.—role of hydroxyl groups in photo-adsorption. J Chem Soc Faraday Trans 1 75:736–747. https://doi.org/10.1039/F19797500736

    Article  CAS  Google Scholar 

  51. Muraki H, Saji T, Fujihira M, Aoyagui S (1984) Photocatalytic oxidation of water to hydrogen peroxide by irradiation of aqueous suspensions of TiO2. J Electroanal Chem Interfacial Electrochem 169:319–323. Doi: https://doi.org/10.1016/0022-0728(84)80094-7

    Article  CAS  Google Scholar 

  52. Soltani T, Yamamoto A, Singh SP et al (2021) Simultaneous Formation of CO and H2O2 from CO2 and H2O with a Ag–MnOx/CaTiO3 Photocatalyst. ACS Appl Energy Mater 4:6500–6510. Doi: https://doi.org/10.1021/acsaem.1c00510

    Article  CAS  Google Scholar 

  53. Gao C, Meng Q, Zhao K et al (2016) Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2. Adv Mater 28:6485–6490. Doi: https://doi.org/10.1002/adma.201601387

    Article  CAS  PubMed  Google Scholar 

  54. Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D et al (2017) Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2–TiO2 materials. Int J Hydrog Energy 42:9744–9753. https://doi.org/10.1016/j.ijhydene.2017.03.050

    Article  CAS  Google Scholar 

  55. Yu J, Hai Y, Jaroniec M (2011) Photocatalytic hydrogen production over CuO-modified titania. J Colloid Interface Sci 357:223–228. Doi: https://doi.org/10.1016/J.JCIS.2011.01.101

    Article  CAS  PubMed  Google Scholar 

  56. Yusop RM, Yarmo MA, Isahak WNRW et al (2013) Adsorption–desorption of CO2 on different type of copper oxides surfaces: Physical and chemical attractions studies. J CO2 Util 2:8–15. Doi: https://doi.org/10.1016/j.jcou.2013.06.002

    Article  CAS  Google Scholar 

  57. Sun Z, Talreja N, Tao H et al (2018) Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew Chem Int Ed 57:7610–7627. https://doi.org/10.1002/anie.201710509

    Article  CAS  Google Scholar 

  58. Zhang Q, Yang P, Zhang H et al (2022) Oxygen vacancies in Co3O4 promote CO2 photoreduction. Appl Catal B 300:120729. https://doi.org/10.1016/j.apcatb.2021.120729

    Article  CAS  Google Scholar 

  59. Ji Y, Luo Y (2016) New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: the essential role of oxygen vacancy. J Am Chem Soc 138:15896–15902. https://doi.org/10.1021/jacs.6b05695

    Article  CAS  PubMed  Google Scholar 

  60. Xing H, Guo EL et al (2019) Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorg Chem Front 6:2488–2499. Doi: https://doi.org/10.1039/C9QI00780F

    Article  CAS  Google Scholar 

  61. Wang Y, Lü Y, Zhan W et al (2015) Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. J Mater Chem A 3:12796–12803. Doi: https://doi.org/10.1039/C5TA01108F

    Article  CAS  Google Scholar 

  62. Dai X, Dai Y, Lu J et al (2020) Cobalt oxide nanocomposites modified by NiCo-layered double hydroxide nanosheets as advanced electrodes for supercapacitors. Ionics (Kiel) 26:2501–2511. Doi: https://doi.org/10.1007/s11581-019-03333-6

    Article  CAS  Google Scholar 

  63. Dynarowska M, Kotwiński J, Leszczynska M et al (2017) Ionic conductivity and structural properties of Na2Ti3O7 anode material. Solid State Ion 301:35–42. https://doi.org/10.1016/j.ssi.2017.01.002

    Article  CAS  Google Scholar 

  64. Vattikuti SVP, Nam ND, Shim J (2020) Graphitic carbon nitride/Na2Ti3O7/V2O5 nanocomposite as a visible light active photocatalyst. Ceram Int 46:18287–18296. Doi: https://doi.org/10.1016/j.ceramint.2020.05.045

    Article  CAS  Google Scholar 

  65. Marques TMF, Morais RN, Nobre FX et al (2019) Hydrogen production from aqueous glycerol using titanate nanotubes decorated with Au nanoparticles as photocatalysts. An Acad Bras Cienc 91:1–15. https://doi.org/10.1590/0001-3765201920190082

    Article  CAS  Google Scholar 

  66. Mahmoud MS, Ahmed E, Farghali AA et al (2018) Influence of Mn, Cu, and Cd–doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation. Colloids Surf A 554:100–109. https://doi.org/10.1016/j.colsurfa.2018.06.039

    Article  CAS  Google Scholar 

  67. Parayil SK, Razzaq A, Park S-M et al (2015) Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes. Appl Catal A 498:205–213. https://doi.org/10.1016/j.apcata.2015.03.044

    Article  CAS  Google Scholar 

  68. Park H, Ou H-H, Colussi AJ, Hoffmann MR (2015) Artificial photosynthesis of C1–C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. J Phys Chem A 119:4658–4666. https://doi.org/10.1021/jp511329d

    Article  CAS  PubMed  Google Scholar 

  69. Wu H-Y, Nguyen NH, Bai H et al (2015) Photocatalytic reduction of CO2 using molybdenum-doped titanate nanotubes in a MEA solution. RSC Adv 5:63142–63151. Doi: https://doi.org/10.1039/C5RA10408D

    Article  CAS  Google Scholar 

  70. Tang Q, Sun Z, Wang P et al (2019) Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Appl Surf Sci 463:456–462. Doi:https://doi.org/10.1016/j.apsusc.2018.08.245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by CONACYT FC-1725 and SEP-CONACYT 253349. Garay-Rodríguez thank to CONACYT FC-1725 for the fellowship awarded. Finally, the authors thank to Dr. Carlos Ornelas from CIMAV Chihuahua and MC Luis Gerardo Silva form CIMAV Monterrey for his valuable help in the HR-TEM and XPS measurements, respectively.

Author information

Authors and Affiliations

Authors

Contributions

LFG-R: Conceptualization, methodology, investigation, data curation, writing original draft. LMT-M: Conceptualization, resources, supervision, writing—review and editing. HY: Resources, supervision, writing—review and editing. IJ-R: Resources, writing—review and editing.

Corresponding author

Correspondence to Leticia M. Torres-Martínez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 443.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garay-Rodríguez, L.F., Torres-Martínez, L.M., Yoshida, H. et al. Simultaneous CO2 Photo-Reduction and Water Splitting Over Na2Ti3O7 Deposited with Co and Cu Oxide Cocatalysts. Top Catal 65, 1191–1208 (2022). https://doi.org/10.1007/s11244-022-01668-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01668-5

Keywords

Navigation