Skip to main content
Log in

Vanadium Supported on Titanium Pillared Montmorillonite Clay for the Selective Catalytic Oxidation of Benzyl Alcohol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mineral clays can contribute to chemical processes benign to the environment because they are low-cost and abundant natural materials. In the present work, a series of modified pillared clays (PILCs) were prepared from a bentonite and an acid pillaring solution containing titanium butoxide, subsequently were modified with different vanadium contents by wet impregnation. The characterization of these materials showed a significant increase in basal spacing, specific surface and pore volume of all pillared materials confirming the presence of pillars that expand the layers of clay. All the pillared materials were active in the oxidation of benzyl alcohol (BzOH) with H2O2 showing a high conversion of about 43% respect to the maximum, 95% selectivity to benzaldehyde (BzH) and 41% yield with V(0.5%)/Ti-PILC as catalyst, after 5 h of reaction. This catalytic performance might be related to the presence of highly dispersed isolated metal ions in tetrahedral coordination. Furthermore, V(0.5%)/Ti-PILC could be recovered and effectively reused during three cycles without a significant loss in its activity and with an approximate 1% decrease of selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Bergaya F, Lagaly G (2013) Handbook of clay science, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  2. Shahidi D, Roy R, Azzouz A (2015) Appl Catal B 174–175:277–292. https://doi.org/10.1016/j.apcatb.2015.02.042

    Article  CAS  Google Scholar 

  3. Naswir M, Arita S, Marsi S (2013) Sci J Chem 1:74–82. https://doi.org/10.11648/j.sjc.20130105.14

    Article  Google Scholar 

  4. Caglar B, Afsin B, Tabak A, Eren E (2009) Chem Eng J 149:242–248. https://doi.org/10.1016/j.cej.2008.10.028

    Article  CAS  Google Scholar 

  5. Elzea J, Murray HH (1990) Appl Clay Sci 3:229–248. https://doi.org/10.1016/0169-1317(90)90012-E

    Article  Google Scholar 

  6. Murray HH (2007) Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier, Amsterdam

    Google Scholar 

  7. Vicente MA, Bañares-Muñoz MA, Gandía LM, Gil A (2001) Appl Catal A 217:191–204. https://doi.org/10.1016/S0926-860X(01)00603-2

    Article  CAS  Google Scholar 

  8. Chmielarz L, Dziembaj R (2021) Catalyst 11(5):644. https://doi.org/10.3390/catal11050644

    Article  CAS  Google Scholar 

  9. Centi G, Perathoner S (2008) Microporous Mesoporous Mater 107:3–15. https://doi.org/10.1016/j.micromeso.2007.03.011

    Article  CAS  Google Scholar 

  10. Gil A, Gandía LM, Vicente MA (2000) Catal Rev 42:145–212. https://doi.org/10.1081/CR-100100261

    Article  CAS  Google Scholar 

  11. Murray HH (2000) Appl Clay Sci 17:207–221. https://doi.org/10.1016/S0169-1317(00)00016-8

    Article  CAS  Google Scholar 

  12. Carriazo JG (2012) App Clay Sci 67–68:99–105. https://doi.org/10.1016/j.clay.2012.07.010

    Article  CAS  Google Scholar 

  13. Kloprogge JT (1998) J Porous Mater 5:5–41. https://doi.org/10.1023/A:1009625913781

    Article  CAS  Google Scholar 

  14. Gatica JM, Castiglioni J, de los Santos C, Yeste MP, Cifredo G, Torres M, Vidal H (2017) Catal Today 296:84–94. https://doi.org/10.1016/j.cattod.2017.04.025

    Article  CAS  Google Scholar 

  15. Caudo S, Centi G, Genovese C, Perathoner S (2007) Appl Catal B 70:437–446. https://doi.org/10.1016/j.apcatb.2006.01.031

    Article  CAS  Google Scholar 

  16. Dorado F, de Lucas A, García PB, Romero A, Valverde JL (2006) Appl Catal A 305:189–196. https://doi.org/10.1016/j.apcata.2006.03.022

    Article  CAS  Google Scholar 

  17. Valverde JL, de Lucas A, Sánchez P, Dorado F, Romero A (2003) Appl Catal B 43:43–56. https://doi.org/10.1016/S0926-3373(02)00274-6

    Article  CAS  Google Scholar 

  18. Satterfield CN (1991) Heterogeneous catalysis in industrial practice, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  19. Arfaoui J, Boudali LK, Ghorbel A (2010) Appl Clay Sci 48:171–178. https://doi.org/10.1016/j.clay.2009.12.005

    Article  CAS  Google Scholar 

  20. Lyu X, Mao H, Zhu K, Kong Y, Kobayashi M (2017) Microporous Mesoporous Mater 252:1–9. https://doi.org/10.1016/j.micromeso.2017.06.014

    Article  CAS  Google Scholar 

  21. Li J, Hu M, Zuo S, Wang X (2018) Opin Chem Eng 20:93–98. https://doi.org/10.1016/j.coche.2018.02.001

    Article  Google Scholar 

  22. Zang S, Zhang G, Qiu W, Song L, Zhang R, He H (2016) Chin J Catal 37:888–897. https://doi.org/10.1016/S1872-2067(15)61083-X

    Article  CAS  Google Scholar 

  23. Tomul F, Turgut Basoglu F, Canbay H (2016) Appl Surf Sci 360:579–593. https://doi.org/10.1016/j.apsusc.2015.10.228

    Article  CAS  Google Scholar 

  24. Bineesh KV, Kim M, Lee G, Selvaraj M, Park D (2013) Appl Clay Sci 74:127–134. https://doi.org/10.1016/j.clay.2012.04.023

    Article  CAS  Google Scholar 

  25. Bineesh KV, Kim D, Kim M, Park D (2011) Appl Clay Sci 53:204–211. https://doi.org/10.1016/j.clay.2010.12.022

    Article  CAS  Google Scholar 

  26. Zuo S, Ding M, Tong J, Feng L, Qi C (2015) Appl Clay Sci 105–106:118–123. https://doi.org/10.1016/j.clay.2014.12.033

    Article  CAS  Google Scholar 

  27. Shen B, Ma H, Yao Y (2012) J Environ Sci 24:499–506. https://doi.org/10.1016/S1001-0742(11)60756-0

    Article  CAS  Google Scholar 

  28. Cheng J, Song Y, Ye Q, Cheng S, Kang T, Dai H (2018) Mol Catal 445:111–123. https://doi.org/10.1016/j.mcat.2017.11.019

    Article  CAS  Google Scholar 

  29. Jagtap N, Ramaswamy V (2006) Appl Clay Sci 33:89–98. https://doi.org/10.1016/j.clay.2006.04.001

    Article  CAS  Google Scholar 

  30. Mata G, Trujillano R, Vicente MA, Korili SA, Gil A, Belver C, Ciuffi KJ, Nassar EJ, Ricci GP, Cestari A, Nakagaki S (2009) Microporous Mesoporous Mater 124:218–226. https://doi.org/10.1016/j.micromeso.2009.05.018

    Article  CAS  Google Scholar 

  31. Binitha NN, Sugunan S (2006) Microporous Mesoporous Mater 93:82–89. https://doi.org/10.1016/j.micromeso.2006.02.005

    Article  CAS  Google Scholar 

  32. Sheldon RA, Kochin JK (1981) Metal-catalyzed oxidation of organic compounds, 1st edn. Academic Press, New York

    Google Scholar 

  33. Hudlicky M (1990) Oxidations in organic chemistry. ACS Monograph Ser. (186), Washington

  34. Mallat T, Baiker A (2004) Chem Rev 104:3037–3058. https://doi.org/10.1021/cr0200116

    Article  CAS  PubMed  Google Scholar 

  35. Ciriminna R, Pandarus V, Beland F, Xu Y-J, Pagliaro M (2015) Org Process Res Dev 19(11):1554–1558. https://doi.org/10.1021/acs.oprd.5b00204

    Article  CAS  Google Scholar 

  36. Mori K, Yamaguchi K, Hará T, Mizugaki T, Ebitani K, Kaneda K (2002) J Am Chem Soc 124:11572–11573. https://doi.org/10.1021/ja020444q

    Article  CAS  PubMed  Google Scholar 

  37. Azizi N, Khajeh M, Alipour M (2014) Ind Eng Chem Res 53:15561–15565. https://doi.org/10.1021/ie502019z

    Article  CAS  Google Scholar 

  38. Thao NT, Nhu NT, Lin K-S (2018) J Taiwan Inst Chem E 83:10–22. https://doi.org/10.1016/j.jtice.2017.11.034

    Article  CAS  Google Scholar 

  39. Sudhakara Prasad K, Noh H-B, Subba Reddy S, Eswar Reddy A, Shim Y-B (2014) Appl Catal A 476:72–77. https://doi.org/10.1016/j.apcata.2014.02.020

    Article  CAS  Google Scholar 

  40. Adam F, Ooi WT (2012) Appl Catal A 445–446:252–260. https://doi.org/10.1016/j.apcata.2012.08.029

    Article  CAS  Google Scholar 

  41. Zhou W, Liu J, Pan J, Sun F, He M, Chen Q (2015) Catal Commun 69:1–4. https://doi.org/10.1016/j.catcom.2015.05.012

    Article  CAS  Google Scholar 

  42. Chen YZ, Wang ZU, Wang H, Lu J, Yu SH, Jiang HL (2017) J Am Chem Soc 139:2035–2044. https://doi.org/10.1021/jacs.6b12074

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Zou S, Lu L, Zhao H, Xiao L, Fan J (2017) Catal Commun 99:6–9. https://doi.org/10.1016/j.catcom.2017.05.015

    Article  CAS  Google Scholar 

  44. Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ (2020) Chem Rev 120:3890–3938. https://doi.org/10.1021/acs.chemrev.9b00662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jappar N, Xia Q, Tatsumi T (1998) J Catal 180:132–141

    Article  CAS  Google Scholar 

  46. Pillai UR, Sahle-Demessie E (2004) App Catal A 276:139–144. https://doi.org/10.1016/j.apcata.2004.07.052

    Article  CAS  Google Scholar 

  47. Wang X, Wu G, Li J, Zhao N, Wei W, Sun Y (2007) Catal Lett 119:87–94

    Article  CAS  Google Scholar 

  48. Schurz F, Bauchert JM, Merker T, Schleid T, Hasse H, Gläser R (2009) App Catal Gen 355:42–49

    Article  CAS  Google Scholar 

  49. Shi F, Tse M, Pohl M, Radnik J, Brückner A, Zhang S, Beller M (2008) J Mol Catal A 292:28–35

    Article  CAS  Google Scholar 

  50. Shaabani A, Farhangi E, Rahmati A (2008) App Catal A 338:14–19. https://doi.org/10.1016/j.apcata.2007.12.014

    Article  CAS  Google Scholar 

  51. Kawabata T, Shinozuka Y, Ohishi Y, Shishido T, Takaki K, Takehira K (2005) J Mol Catal A 236:206–215. https://doi.org/10.1016/j.molcata.2005.04.035

    Article  CAS  Google Scholar 

  52. Zhu M, Li B, He P, Wei X, Yuan Y (2008) Tetrahedron 64:9239–9243

    Article  CAS  Google Scholar 

  53. Behera GC, Parida KM (2012) App Catal A 413–414:245–253. https://doi.org/10.1016/j.apcata.2011.11.016

    Article  CAS  Google Scholar 

  54. Cánepa AL, Elías VR, Vaschetti VM, Sabre EV, Eimer GA, Casuscelli SG (2017) Appl Catal A 545:72–78. https://doi.org/10.1016/j.apcata.2017.07.039

    Article  CAS  Google Scholar 

  55. Arfaoui J, Khalfallah Boudali L, Ghorbel A, Delahay G (2009) Catal Today 142:234–238. https://doi.org/10.1016/j.cattod.2008.07.032

    Article  CAS  Google Scholar 

  56. Chen D, Zhu Q, Zhou F, Deng X, Li F (2012) J Hazard Mater 235–236:186–193. https://doi.org/10.1016/j.jhazmat.2012.07.038

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Liu JR, Jia SY, Guo JW, Zhuo J, Na P (2012) Chem Eng J 191:66–74. https://doi.org/10.1016/j.cej.2012.02.058

    Article  CAS  Google Scholar 

  58. Chae H, Nam I, Ham S, Hong S (2004) Appl Catal B 53:117–126. https://doi.org/10.1016/j.apcatb.2004.04.018

    Article  CAS  Google Scholar 

  59. Rangel-Rivera P, Bachiller-Baeza MB, Galindo-Esquivel I, Rangel-Porras G (2018) Appl Surf Sci 445:229–241. https://doi.org/10.1016/j.apsusc.2018.03.157

    Article  CAS  Google Scholar 

  60. Chao MC, Lin HP, Mou CY, Cheng BW, Cheng CF (2004) Catal Today 97:81–87. https://doi.org/10.1016/j.cattod.2004.06.140

    Article  CAS  Google Scholar 

  61. Held A, Florczak P (2009) Catal Today 142:329–334. https://doi.org/10.1016/j.cattod.2008.07.030

    Article  CAS  Google Scholar 

  62. Chaudhari MP, Sawant SB (2005) Chem Eng J 106:111–118. https://doi.org/10.1016/j.cej.2004.07.014

    Article  CAS  Google Scholar 

  63. Buonomenna MG, Drioli E (2008) Appl Catal B 79:35–42. https://doi.org/10.1016/j.apcatb.2007.10.003

    Article  CAS  Google Scholar 

  64. Solsona B, Blasco T, López Nieto JM, Peña ML, Rey F, Vidal-Moya A (2001) J Catal 203:443–452. https://doi.org/10.1006/jcat.2001.3326

    Article  CAS  Google Scholar 

  65. Pieck CL, de Val S, Lopez Granados M, Banares MA, Fierro JLG (2002) Langmuir 18:2642–2648. https://doi.org/10.1021/la0114631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Tecnológica Nacional—Facultad Regional Córdoba (UTN-FRC) for their financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra G. Casuscelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabre, E.V., Viola, B.M., Cánepa, A.L. et al. Vanadium Supported on Titanium Pillared Montmorillonite Clay for the Selective Catalytic Oxidation of Benzyl Alcohol. Top Catal 65, 1373–1381 (2022). https://doi.org/10.1007/s11244-022-01663-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01663-w

Keywords

Navigation