Skip to main content
Log in

Thiophene-Based Oligomers Formed in-situ: A Novel Sensitizer Material of TiO2/HY Hybrid Material

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) or titania is only photoactive under ultraviolet irradiation (λ ≤ 390 nm), which limits its applications under visible light. Different sensitizers have been used to increase the semiconductor’s photo-response range, and π-conjugated systems are promising for this application. In this work, the use of protonated thiophene-based oligomers (OTn+) as sensitizers, was tested, due its characteristics such as thermal and chemical stability. These compounds can be formed by the reaction of thiophene and Brönsted acid sites on protonic zeolite Y. This work presents the synthesis, characterization, and photocatalytic evaluation of a novel hybrid material, TiO2-OTn+/HY. The hybrid material was synthesized by an acid-catalyzed sol–gel method obtaining nanoparticles of TiO2 attached to zeolite Y crystals; the OTn+ were corroborated by 13C nuclear magnetic resonance and UV–Vis spectroscopy, species from the protonated thiophene monomer to the protonated pentathiophene were identified. Moreover, the photocatalytic experiments showed that the materials with OTn+ were faster than non-sensitized materials in the methyl orange degradation, in this way, a visible light active material is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Athanasekou CP, Likodimos V, Falaras P (2018) Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. J Environ Chem 6:7386–7394. https://doi.org/10.1016/j.jece.2018.07.026

    Article  CAS  Google Scholar 

  2. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529. https://doi.org/10.1016/j.jhazmat.2009.05.039

    Article  CAS  PubMed  Google Scholar 

  3. Sakthivel S, Hidalgo MC, Bahnemann DW, Geissen SU, Murugesan V, Vogelpohl A (2006) A fine route to tune the photocatalytic activity of TiO2. Appl Catal B 63:31–40. https://doi.org/10.1016/j.apcatb.2005.08.011

    Article  CAS  Google Scholar 

  4. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C 6:186–205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001

    Article  CAS  Google Scholar 

  5. Nguyen TV, Wu JCS, Chiou CH (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076. https://doi.org/10.1016/j.catcom.2008.04.004

    Article  CAS  Google Scholar 

  6. Shang X, Li B, Li C, Wang X, Zhang T, Jiang S (2013) Preparation and enhanced visible light catalytic activity of TiO2 sensitized with benzimidazolone yellow H3G. Dyes Pigment 98:358–366. https://doi.org/10.1016/j.dyepig.2013.03.009

    Article  CAS  Google Scholar 

  7. Shang X, Li B, Zhang T, Li C, Wang X (2013) Photocatalytic degradation of methyl orange with commercial organic pigment sensitized TiO2. Procedia Environ Sci 18:478–485. https://doi.org/10.1016/j.proenv.2013.04.064

    Article  CAS  Google Scholar 

  8. Vallejo W, Rueda A, Díaz-Uribe C, Grande C, Quintana P (2019) Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis. R Soc Open Sci 6:181824. https://doi.org/10.1098/rsos.181824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cabir B, Yurderi M, Caner N, Agirtas MS, Zahmakiran M, Kaya M (2017) Methylene blue photocatalytic degradation under visible light irradiation on copper phthalocyanine-sensitized TiO2 nanopowders. Mater Sci Eng B 224:9–17. https://doi.org/10.1016/j.mseb.2017.06.017

    Article  CAS  Google Scholar 

  10. Chowdhury D, Paul A, Chattopadhyay A (2005) Photocatalytic polypyrrole−TiO2−nanoparticles composite thin film generated at the air−water interface. Langmuir 21:4123–4128. https://doi.org/10.1021/la0475425

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Yu Y, Zhang J, Chen F, Meng X, Qiu Y, Dan Y, Jiang L (2018) In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis. Appl Surf Sci 434:796–805. https://doi.org/10.1016/j.apsusc.2017.10.176

    Article  CAS  Google Scholar 

  12. Gao H, Cai M, Liao Y (2019) Enhance photocatalytic properties of TiO2 using π-π* conjugate system. J Dispers Sci Technol 40:1469–1478. https://doi.org/10.1080/01932691.2018.1518143

    Article  CAS  Google Scholar 

  13. Kratofil Krehula L, Stjepanović J, Perlog M, Krehula S, Gilja V, Travas-Sejdic J, Hrnjak-Murgić Z (2019) Conducting polymer polypyrrole and titanium dioxide nanocomposites for photocatalysis of RR45 dye under visible light. Polym Bull 76:1697–1715. https://doi.org/10.1007/s00289-018-2463-2

    Article  CAS  Google Scholar 

  14. Wang Y, Jamal R, Wang M, Yang L, Liu F, Abdiryim T (2017) A donor–acceptor–donor-type conjugated polymer-modified TiO2 with enhanced photocatalytic activity under simulated sunlight and natural sunlight. J Mater Sci 52:4820–4832. https://doi.org/10.1007/s10853-016-0717-7

    Article  CAS  Google Scholar 

  15. Xu Y, Langford CH (1995) Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite A at low coverage. J Phys Chem 99:11501–11507. https://doi.org/10.1021/j100029a031

    Article  CAS  Google Scholar 

  16. Easwaramoorthi S, Natarajan P (2009) Characterisation and spectral properties of surface adsorbed phenosafranine dye in zeolite-Y and ZSM-5: photosensitisation of embedded nanoparticles of titanium dioxide. Microporous Mesoporous Mater 117:541–550. https://doi.org/10.1016/j.micromeso.2008.07.042

    Article  CAS  Google Scholar 

  17. Easwaramoorthi S, Natarajan P (2005) Photophysical properties of phenosafranine (PHNS) adsorbed on the TiO2-incorporated zeolite-Y. Microporous Mesoporous Mater 86:185–190. https://doi.org/10.1016/j.micromeso.2005.07.009

    Article  CAS  Google Scholar 

  18. Geobaldo F, Palomino GT, Bordiga S, Zecchina A, Areán O (1999) Spectroscopic study in the UV-vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite H-Y. Phys Chem Chem Phys 1:561–569. https://doi.org/10.1039/a807353h

    Article  CAS  Google Scholar 

  19. Zhang J, Yang H, Xu S, Yang L, Song Y, Jiang L, Dan Y (2015) Dramatic enhancement of visible light photocatalysis due to strong interaction between TiO2 and end-group functionalized P3HT. Appl Catal B 174–175:193–202. https://doi.org/10.1016/j.apcatb.2015.02.034

    Article  CAS  Google Scholar 

  20. Song L, Qiu R, Mo Y, Zhang D, Wei H, Xiong Y (2007) Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal Commun 8:429–433. https://doi.org/10.1016/j.catcom.2006.07.001

    Article  CAS  Google Scholar 

  21. Moosvi SK, Majid K, Ara T (2017) Study of thermal, electrical, and photocatalytic activity of iron complex doped polypyrrole and polythiophene nanocomposites. Ind Eng Chem Res 56:4245–4257. https://doi.org/10.1021/acs.iecr.7b00167

    Article  CAS  Google Scholar 

  22. Chandra MR, Siva Prasada Reddy P, Rao TS, Pammi SVN, Kumar KS, Babu KV, Kumar CK, Hemalatha KPJ (2017) Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite. J Phys Chem Solids 105:99–105. https://doi.org/10.1016/j.jpcs.2017.02.014

    Article  CAS  Google Scholar 

  23. Rivera VM, Suárez-Méndez A, Pascual-Mathey LI, Gutierrez A, Vera MA, Fuentes GA (2019) On the interaction of thiophene and zeolite-Y in the thiophene-based oligomers formation. Rev Mex Ing Quim 19:471–479. https://doi.org/10.24275/rmiq/Mat617

    Article  Google Scholar 

  24. Chowdhury P, Elkamel A, Ray AK (2015) Photocatalytic processes for the removal of dye. Green chemistry for dyes removal from wastewater. Wiley, Hoboken, pp 119–137

    Chapter  Google Scholar 

  25. Treacy M, Higgins J (2007) Collection of simulated XRD powder patterns for zeolites, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  26. Beyerlein RA, Choi-Feng C, Hall JB, Huggins BK, Ray GJ (1997) Effect of steaming on the defect structure and acid catalysis of protonated zeolites. Top Catal 4:27–42. https://doi.org/10.1023/A:1019188105794

    Article  CAS  Google Scholar 

  27. Baran R, Millot Y, Onfroy T, Krafft JM, Dzwigaj S (2012) Influence of the nitric acid treatment on Al removal, framework composition and acidity of BEA zeolite investigated by XRD, FTIR and NMR. Microporous Mesoporous Mater 163:122–130. https://doi.org/10.1016/j.micromeso.2012.06.055

    Article  CAS  Google Scholar 

  28. Downs RT, Hall-Wallace M (2003) The American mineralogist crystal structure database. Am Miner 88:247–250

    Article  CAS  Google Scholar 

  29. Kim YI, Keller SW, Krueger JS, Yonemoto EH, Saupe GB, Mallouk TE (1997) Photochemical charge transfer and hydrogen evolution mediated by oxide semiconductor particles in zeolite-based molecular assemblies. J Phys Chem B 101:2491–2500. https://doi.org/10.1021/jp962539i

    Article  CAS  Google Scholar 

  30. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  31. Valencia D, Whiting GT, Bulo RE, Weckhuysen BM (2016) Protonated thiophene-based oligomers as formed within zeolites: understanding their electron delocalization and aromaticity. Phys Chem Chem Phys 18:2080–2086. https://doi.org/10.1039/C5CP06477E

    Article  CAS  PubMed  Google Scholar 

  32. Alves-Santos M, Jorge LMM, Caldas MJ, Varsano D (2014) Electronic structure of interfaces between thiophene and TiO2 nanostructures. J Phys Chem C 118:13539–13544. https://doi.org/10.1021/jp407275e

    Article  CAS  Google Scholar 

  33. Shan H, Li C, Yang C, Zhao H, Zhao BY, Zhang JF (2002) Mechanistic studies on thiophene species cracking over USY zeolite. Catal Today 77:117–126. https://doi.org/10.1016/S0920-5861(02)00238-9

    Article  CAS  Google Scholar 

  34. Chica A, Strohmaier KG, Iglesia E (2005) Effects of zeolite structure and aluminum content on thiophene adsorption, desorption, and surface reactions. Appl Catal B 60:223–232. https://doi.org/10.1016/j.apcatb.2005.02.031

    Article  CAS  Google Scholar 

  35. Cho M, Chung H, Yoon J (2003) Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl Environ Microbiol 69:2284–2291. https://doi.org/10.1128/AEM.69.4.2284-2291.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ungelenk J, Feldmann C (2012) Adjustable kinetics in heterogeneous photocatalysis demonstrating the relevance of electrostatic interactions. Appl Catal B 127:11–17. https://doi.org/10.1016/j.apcatb.2012.07.037

    Article  CAS  Google Scholar 

  37. Tsuchiya N, Kuwabara K, Hidaka A, Oda K, Katayama K (2012) Reaction kinetics of dye decomposition processes monitored inside a photocatalytic microreactor. Phys Chem Chem Phys 14:4734. https://doi.org/10.1039/c2cp23979e

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Victor M. Rivera and Epifanio Morales-Zarate acknowledges the support of PRODEP-SEP “Fortalecimiento de Cuerpos Académicos—IDCA 29409” for the purchase of reagents and consumables. Gustavo A. Fuentes acknowledges the support of CONACyT and UAM for the purchase and maintenance of the UV–Vis Spectrometer. Benito Serrano acknowledges the support of the CONACyT project 221690—CB-2013-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Rivera.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests or personal relationships that could appear to have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Méndez, A., López-Curiel, J.C., Fuentes, G.A. et al. Thiophene-Based Oligomers Formed in-situ: A Novel Sensitizer Material of TiO2/HY Hybrid Material. Top Catal 65, 1218–1224 (2022). https://doi.org/10.1007/s11244-022-01654-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01654-x

Keywords

Navigation