Skip to main content
Log in

Photocatalytic Degradation of High Concentration Aqueous Solutions of Ketoprofen: Adsorption, Reaction Kinetic and Product Studies

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of ketoprofen, a non-steroidal anti-inflammatory medication, with concentrations up to 80 ppm was studied using TiO2 Evonik-P25 as catalyst, UV radiation and constant flow of oxygen. Ketoprofen adsorption experiments under dark conditions were also carried out with the aim to get information about the interaction between ketoprofen and catalyst surface. Adsorption–desorption equilibrium was reached in 30 min of interaction. According to Langmuir isotherm, the maximum adsorption capacity of the organic molecule on the surface of TiO2 is 0.0672 mMoles KTP g−1 TiO2 and the adsorption constant is 1.771 L mM−1. Experimental results in terms of photocatalytic degradation indicate a complete mineralization of ketoprofen molecule after 6 h of reaction. Experimental results also indicate that the initial reaction rate of the photocatalytic degradation of ketoprofen can be modeled by the Langmuir–Hinshelwood–Hougen–Watson reaction rate equation. The kinetic constant and adsorption parameters of the LH–HW equation are 0.14 min−1 and 20.72 mM−1 respectively. Chemical analysis of reaction samples by HPLC, TOC, and UV–vis spectroscopy indicated that ketoprofen is mineralized via formation of hydroxy benzophenone, benzoic acid, hydroquinone, catechol, benzoquinone, benzene triol and phenol in a series–parallel reaction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Zeng Y, Lin X, Li F, Chen P, Kong Q, Liu G, Lv W (2018) Ozonation of ketoprofen with nitrate in aquatic environments: kinetics, pathways and toxicity. RSC Adv. https://doi.org/10.1039/C7RA12894K

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matamoros V, Duhee A, Albaigés J, Bayona J (2009) Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17∝-ethinylestradiol in fresh and seawater. Water Air Soil Pollut. https://doi.org/10.1007/s11270-008-9765-1

    Article  Google Scholar 

  3. Jankunaite D, Tichonovas M, Buivydiene D, Radziuniene I, Racys V, Krugly E (2017) Removal of diclofenac, ketoprofen, and carbamazepine from simulated drinking water by advanced oxidation in a model reactor. Water Air Soil Pollut. https://doi.org/10.1007/s11270-017-3517-z

    Article  Google Scholar 

  4. Patel M, Kumar R, Kishor K, Mlsna T, Pittman C, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  PubMed  Google Scholar 

  5. Moura MMDS, Lima VE, Neto AAD, de Lucena ALA, Napoleao DC, Duarte MMMB (2021) Degradation of the mixture of the ketoprofen, meloxicam and tenoxicam drugs using TiO2/metal photocatalysts norted in polystyrene packaging waste. Water Sci Technol. https://doi.org/10.2166/wst.2021.025

    Article  PubMed  Google Scholar 

  6. Trawinski J, Skibinski R (2017) Studies on photodegradation process of psychotropic drugs: a review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-7727-5

    Article  Google Scholar 

  7. Farré M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends Anal Chem. https://doi.org/10.1016/j.trac.2008.09.010

    Article  Google Scholar 

  8. Arimoto-Kobayashi S (2014) Photogenotoxicity and photomutagenicity of medicines, carcinogens and endogenous compounds. Genes Environ. https://doi.org/10.3123/jemsge.2014.018

    Article  Google Scholar 

  9. Martinez C, Vilariño S, Fernandez M, Faria J, Canle M, Santaballa J (2013) Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution. Appl Catal B. https://doi.org/10.1016/j.apcatb.2013.05.018

    Article  Google Scholar 

  10. Dominguez J, Gonzalez T, Palo P, Sánchez J (2010) Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chem Eng J. https://doi.org/10.1016/j.cej.2010.07.010

    Article  Google Scholar 

  11. Yetti RD, Safni, Rivai H (2017) Photo degradation of ketoprofen using titanium dioxide as catalyst. IJRDO J Biol Sci 3(7):30–45

  12. Yang X, Flowers R, Weinberg H, Singer P (2011) Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res. https://doi.org/10.1016/j.watres.2011.07.026

    Article  PubMed  Google Scholar 

  13. Chong M, Jin B, Chow C, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res. https://doi.org/10.1016/j.watres.2010.02.039

    Article  PubMed  Google Scholar 

  14. Salgado R, Pereira V, Carvalho G, Soeiro R, Gaffney V, Almeida C, Cardoso V, Ferreira E, Benoliel M, Reis M, Noronha J (2013) Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2012.10.039

    Article  PubMed  Google Scholar 

  15. Wols B, Hofman C, Harmsen D, Beerendonk E (2013) Degradation of 40 selected pharmaceuticals by UV/H2O2. Water Res. https://doi.org/10.1016/j.watres.2013.07.008

    Article  PubMed  Google Scholar 

  16. Illés E, Szabó E, Takács E, Wojnárovits L, Dombi A, Gajda K (2014) Ketoprofen removal by O3 and O3/UV processes: kinetics transformation products and ecotoxicity. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2013.10.119

    Article  PubMed  Google Scholar 

  17. Umar K, Mohamad MN, Ahmad A, Rafatullah M (2019) Synthesis of Mn-doped TiO2 by novel route and photocatalytic mineralization/intermediate studies of organic pollutants. Res Chem Intermed. https://doi.org/10.1007/s11164-019-03771-x

    Article  Google Scholar 

  18. Djouadi L, Khalaf H, Boukhatem H, Boutoumi H, Kezzime A, Santaballa JA, Canle M (2018) Degradation of aqueous ketoprofen by heterogeneous pohotocatalysis using Bi2S3/TiO2-montmorillonite nanocomposites under simulated solar irradiation. Appl Clay Sci. https://doi.org/10.1016/j.clay.2018.09.008

    Article  Google Scholar 

  19. Cristino V, Longobucco G, Marchetti N, Cramori S, Bignozzi CA, Martucci A, Molinari A, Boaretto R, Stevanin C, Argazzi R, Dal Colle M, Bertoncello R, Pasti L (2020) Photoelectrochemical degradation of pharmaceuticals at β25 modified WO3 interfaces. Catal Today. https://doi.org/10.1016/j.cattod.2018.09.020

    Article  Google Scholar 

  20. Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett. https://doi.org/10.1007/s10311-013-0428-0

    Article  Google Scholar 

  21. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed phase TiO2 using EPR. J Phys Chem B. https://doi.org/10.1021/jp0273934

    Article  Google Scholar 

  22. Jakimska A, Sliwka-Kasynska M, Reszczynska J, Namiésnik J, Kot-Wasik A (2014) Elucidation of transformation pathway of ketoprofen, ibuprofen and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS. Anal Bioanal Chem. https://doi.org/10.1007/s00216-014-7614-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Veronovski N, Andreozzi P, La Mesa C, Sfiligoj-Smole M, Ribitsch V (2010) Use of Gemini surfactants to stabilize TiO2 P25 colloidal dispersions. Colloid Polym Sci. https://doi.org/10.1007/s00396-009-2133-x

    Article  Google Scholar 

  24. Almquist C, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal. https://doi.org/10.1006/jcat.2002.3783

    Article  Google Scholar 

  25. Woldum HS, Larsen KL, Madsen F (2008) Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels. Drug Deliv. https://doi.org/10.1080/10717540701829267

    Article  PubMed  Google Scholar 

  26. Lara-Perez C, Leyva L, Zermeño B, Osorio I, Montalvo C, Moctezuma E (2020) Photocatalytic degradation of diclofenac sodium salt: adsorption and reaction kinetic studies. Environ Earth Sci. https://doi.org/10.1007/s12665-020-09017-z

    Article  Google Scholar 

  27. Moctezuma E, Zamarripa H, Leyva E (2003) Degradación fotocatalitica de soluciones de alta concentración de Paraquat. Rev Int Contam Ambient 19(3):117–125

    CAS  Google Scholar 

  28. Medina-Valtierra J, Frausto-Reyes C, Ramírez-Ortíz J, Moctezuma E, Ruiz F (2007) Preparation of rough anatase films and the evaluation of their photocatalytic efficiencies. Appl Catal B. https://doi.org/10.1016/j.apcatb.2007.05.033

    Article  Google Scholar 

  29. Moctezuma E, Leyva E, López M, Pinedo A, Zermeño B, Serrano B (2013) Photocatalytic degradation of metoprolol tartrate. Top Catal. https://doi.org/10.1007/s11244-013-0119-x

    Article  Google Scholar 

  30. Moctezuma E, Leyva E, Palestino G, de Lasa H (2007) Photocatalytic degradation of methyl parathion: reaction pathways and intermediate reaction products. J Photchem Photobiol A. https://doi.org/10.1016/j.jphotochem.2006.07.014

    Article  Google Scholar 

  31. Aguilar CA, Montalvo C, Ceron JG, Moctezuma E (2011) Photocatalytic degradation of acetaminophen. Int J Environ Res 5(4):1071–1078

    CAS  Google Scholar 

  32. Suttipoparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett. https://doi.org/10.1007/s11671-010-9772-1

    Article  Google Scholar 

  33. Hermann JM (2010) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B. https://doi.org/10.1016/j.apcatb.2010.05.012

    Article  Google Scholar 

  34. Turki A, Guillard C, Dappozze F, Ksibi Z, Berhault G, Kochkar H (2015) Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms. Appl Catal B. https://doi.org/10.1016/j.apcatb.2014.08.010

    Article  Google Scholar 

  35. Hines AL, Maddox RN (1985) Mass transfer: fundamentals and applications. Prentice Hall, New Jersey

    Google Scholar 

  36. Saleh TA, Tuzen M, Sari A (2017) Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.05.038

    Article  Google Scholar 

  37. Saleh TA, Saria A, Tuzen M (2017) Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.01.032

    Article  Google Scholar 

  38. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B. https://doi.org/10.1016/S0926-3373(99)00069-7

    Article  Google Scholar 

  39. Friedmann D, Mendive C, Bahnemann D (2010) TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B. https://doi.org/10.1016/j.apcatb.2010.05.014

    Article  Google Scholar 

  40. Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.07.080

    Article  Google Scholar 

  41. Okamoto K, Yamamoto Y, Tanaka H, Itaya A (1985) Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder. Bull Chem Soc Jpn. https://doi.org/10.1246/bcsj.58.2023

    Article  Google Scholar 

  42. De Lasa H, Serrano B, Salaices M (2005) Photocatalytic reaction engineering. Springer, Boston

    Book  Google Scholar 

  43. Leyva E, Montalvo C, Moctezuma E, Leyva S (2008) Photocatalytic degradation of pyridine in water solution using ZnO as an alternative catalyst to TiO2. J Ceram Process Res 5:455–462

    Google Scholar 

  44. Xu GH, Li M, Wang Y, Zheng N, Yang L, Yu HW, Yu Y (2019) A novel Ag–BiOBr-rGO photocatalyst for enhanced ketoprofen degradation: kinetics and mechanisms. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.04.418

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sacco O, Murcia JJ, Lara AE, Hernandez-Laverde M, Rojas H, Navio JA, Hidalgo MC, Vaiano V (2020) Pt–TiO2–Nb2O5 heterojunction as effective photocatalyst for degradation of diclofenac and ketoprofen. Mater Sci Semicon Proc. https://doi.org/10.1016/j.mssp.2019.104839

    Article  Google Scholar 

  46. Leyva E, Moctezuma E, Noriega S (2017) Photocatalytic degradation of omeprazole. Intermediates and total reaction mechanism. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5263

    Article  Google Scholar 

  47. Leyva E, Moctezuma E, Lopez M, Baines KM, Zermeno B (2019) Photocatalytic degradation of beta-blockers in TiO2 with metoprolol as model compound Intermediates and total reaction mechanism. Catal Today. https://doi.org/10.1016/j.cattod.2018.08.007

    Article  Google Scholar 

  48. Leyva E, Moctezuma E, Baines KM, Noriega S, Zarazua E (2018) A review on chemical advanced oxidation processes for pharmaceuticals with paracetamol as a model compound. Reaction conditions, intermediates and total mechanism. Curr Org Chem. https://doi.org/10.2174/1385272821666171019145520

    Article  Google Scholar 

  49. Moctezuma E, Leyva E, Lara-Perez C, Noriega S, Martinez-Richa A (2020) TiO2 photocatalytic degradation of diclofenac: intermediates and total reaction mechanism. Top Catal. https://doi.org/10.1007/s11244-020-01262-7

    Article  Google Scholar 

  50. Goncalves NPF, Paganini MC, Armillota P, Cerrato E, Calza P (2019) The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103475

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACYT [Grants PDCPN-2014-01-248692 and CB-256795-2016] and UASLP [Grant C17-FRC-04-06.06]. Ilse Acosta Mendiola and Karla Lopez de la O thank CONACYT for their graduate studies fellowships [691687 and 822934].

Author information

Authors and Affiliations

Authors

Contributions

IA performed experiments and wrote the original draft of this paper. EM conceptualized the research project, designed the reaction kinetic experiments, supervised graduate students and edited the final version of the paper. EL designed the experiments to identify the transformation products and collaborate and revised the final version of the paper. KLO performed experiments and collaborated in the writing of the first draft of this paper. BZ conceptualized the research project, designed the reaction kinetic experiments, supervised graduate students and edited the final version of the paper.

Corresponding author

Correspondence to Brenda Zermeño.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, I., Moctezuma, E., López de la O, K. et al. Photocatalytic Degradation of High Concentration Aqueous Solutions of Ketoprofen: Adsorption, Reaction Kinetic and Product Studies. Top Catal 65, 1361–1372 (2022). https://doi.org/10.1007/s11244-022-01653-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01653-y

Keywords

Navigation