Skip to main content
Log in

Study of the Reversibility of the H2 Effect Over Ag/γ-Al2O3 Catalyst During Selective Catalytic Reduction (SCR) of NOx by Propane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of the addition of H2 and its reversibility during the C3H8-SCR with 6% of H2O was studied on a catalyst with 2 wt% Ag/γ-Al2O3. During reaction at programmed temperature (RTP) (H2-C3H8-SCR) the H2 activated the NO conversion starting at 80 °C, and a maximum in the NO conversion-Temperature trace was present at about 140 °C in addition to a broad maximum between 340 and 500 °C. The analysis of SCR reactants and products during H2 on–off tests at 70,651 h−1 showed a possible NOx storage on AgOx between 100 and 150 °C and a possible parallel NOx reduction route (H2-SCR). When H2 was removed, the rate of decay of the NO conversion was slow at 100 °C. The effect of H2 upon the SCR reaction was instantaneous at or above 150 °C, but there was a slow deactivation afterwards. At 400 °C there was a partial irreversibility of the H2 effect upon the NO conversion caused by a slow restructuring of Ag nanoparticles (NPs). At 500 °C it was not possible to measure the effect of H2 because the NOx conversion was nearly complete with or without H2 in the feed. The nature of Ag species was characterized by H2-TPR, HRTEM and XPS, and AgO, Ag2O and Ag0 were detected on the calcined sample. UV–Vis (DRS) show that the Ag structure is sensible to the reaction conditions, forming highly dispersed oxidized species on the support after C3H8-SCR or reduced species (Ag0 NPs and clusters) after and during H2-C3H8-SCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iwamoto M, Yahiro H, Yu-u Y, Shundo S, Mizuno N (1990) Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites. Shokubai (Catalyst) 32:430–439

    CAS  Google Scholar 

  2. Held W, König A, Richter T, Pupper L (1990) SAE Paper 900496

  3. Burch R, Breen JP, Meunier FC (2002) A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl Catal B 39:283–303. https://doi.org/10.1016/S0926-3373(02)00118-2

    Article  CAS  Google Scholar 

  4. Satokawa S (2000) Enhancing the NO/C3H8/O2 reaction by using H2 over Ag/Al2O3 catalysts under lean-exhaust conditions. Chem Lett 29:294–295. https://doi.org/10.1246/cl.2000.294

    Article  Google Scholar 

  5. Hernández-Terán ME, Gómez S, Fuentes G (2011) on the activity and selectivity of Ag/Al2O3 catalyst in the reduction of NO by C3H8 during different residency time under oxygen-rich conditions. In: AIChE 2011 annual meeting. Minneapolis, MN

  6. Hernández-Terán ME, Fuentes GA (2014) Enhancement by H2 of C3H8-SCR of NOx using Ag/γ-Al2O3. Fuel 138:91–97. https://doi.org/10.1016/j.fuel.2014.07.070

    Article  CAS  Google Scholar 

  7. Hernández Terán ME (2020) Desarrollo de sistemas catalíticos de Ag/γ-Al2O3 y Ag/η-Al2O3 para la C3H8-RCS de NO asistida con H2 bajo operación oxidante para sistemas de control Diésel o fuentes fijas. D.Sc. Chem. Eng. Thesis, UAM-Iztapalapa, Ciudad de México, Mexico

  8. Shibata J, Takada Y, Shichi A, Satokawa S, Satsuma A, Hattori T (2004) Ag cluster as active species for SCR of NO by propane in the presence of hydrogen over Ag-MFI. J Catal 222(2):368–376. https://doi.org/10.1016/j.jcat.2003.11.007

    Article  CAS  Google Scholar 

  9. Shibata J, Shimizu KI, Takada Y, Shichi A, Yoshida H, Satokawa S, Satsuma A, Hattori T (2004) Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. J Catal 227(2):367–374. https://doi.org/10.1016/j.jcat.2004.08.007

    Article  CAS  Google Scholar 

  10. Satsuma A, Shibata J, Shimizu KI, Hattori T (2005) Ag clusters as active species for HC-SCR over Ag-zeolites. Catal Surv Asia 9(2):75–85. https://doi.org/10.1007/s10563-005-5993-1

    Article  CAS  Google Scholar 

  11. Breen JP, Burch R, Hardacre C, Hill CJ (2005) Structural investigation of the promotional effect of hydrogen during the selective catalytic reduction of NOx with hydrocarbons over Ag/Al2O3 catalysts. J Phys Chem B 109(11):4805–4807. https://doi.org/10.1021/jp050253k

    Article  CAS  PubMed  Google Scholar 

  12. Satokawa S, Shibata J, Shimizu K, Satsuma A, Hattori T (2003) Promotion effect of H2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al2O3. Appl Catal B 42:179–186. https://doi.org/10.1016/S0926-3373(02)00231-X

    Article  CAS  Google Scholar 

  13. Shibata J, Shimizu KI, Satokawa S, Satsuma A, Hattori T (2003) Promotion effect of hydrogen on surface steps in SCR of NO by propane over alumina-based silver catalyst as examined by transient FT-IR. Phys Chem Chem Phys 5:2154–2160. https://doi.org/10.1039/b302352d

    Article  CAS  Google Scholar 

  14. Chansai S, Burch R, Hardacre C, Breen J, Meunier F (2011) The use of short time-on-stream in situ spectroscopic transient kinetic isotope techniques to investigate the mechanism of hydrocarbon selective catalytic reduction (HC-SCR) of NOx at low temperatures. J Catal 281(1):98–105. https://doi.org/10.1016/j.jcat.2011.04.006

    Article  CAS  Google Scholar 

  15. Chansai S, Burch R, Hardacre C, Breen J, Meunier F (2010) Investigating the mechanism of the H2-assisted selective catalytic reduction (SCR) of NOx with octane using fast cycling transient in situ DRIFTS-MS analysis. J Catal 276(1):49–55. https://doi.org/10.1016/j.jcat.2010.08.014

    Article  CAS  Google Scholar 

  16. Breen JP, Burch R, Hardacre C, Hill CJ, Rioche C (2007) A fast transient kinetic study of the effect of H2 on the selective catalytic reduction of NOx with octane using isotopically labelled 15NO. J Catal 246(1):1–9. https://doi.org/10.1016/j.jcat.2006.11.017

    Article  CAS  Google Scholar 

  17. Wichterlova B, Sazama P, Breen JP, Burch R, Hill CJ, Čapek L, Sobalik Z (2005) An in situ UV–vis and FTIR spectroscopy study of the effect of H2 and CO during the selective catalytic reduction of nitrogen oxides over a silver alumina catalyst. J Catal 235(1):195–200. https://doi.org/10.1016/j.jcat.2005.08.006

    Article  CAS  Google Scholar 

  18. Sazama P, Čapek L, Drobná H, Sobalík Z, Dědeček J, Arve K (2005) Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV–vis study. J Catal 232(2):302–317. https://doi.org/10.1016/j.jcat.2005.03.013

    Article  CAS  Google Scholar 

  19. Eranen K, Klingstedt F, Arve K, Lindfors LE, Murzin DY (2004) On the mechanism of the selective catalytic reduction of NO with higher hydrocarbons over a silver/alumina catalyst. J Catal 227(2):328–343. https://doi.org/10.1016/j.jcat.2004.07.026

    Article  CAS  Google Scholar 

  20. Burch R, Breen JP, Hill CJ, Krutzsch B, Konrad B, Jobson E, Cider L, Eränen K, Klingstedt F, Lindfors LE (2004) Exceptional activity for NOx reduction at low temperatures using combinations of hydrogen and higher hydrocarbons on Ag/Al2O3 catalysts. Top Catal 30–31(1):19–25. https://doi.org/10.1023/B:TOCA.0000029722.12588.1f

    Article  Google Scholar 

  21. Arve K, Backman H, Klingstedt F, Eranen K, Murzin DY (2007) Hydrogen as a remedy for the detrimental effect of aromatic and cyclic compounds on the HC–SCR over Ag/alumina. Appl Catal B 70:65–72. https://doi.org/10.1016/j.apcatb.2005.10.036

    Article  CAS  Google Scholar 

  22. Bion N, Saussey J, Haneda M, Daturi M (2003) Study by in situ FTIR spectroscopy of the SCR of NOx by ethanol on Ag/Al2O3-evidence of the role of isocyanate species. J Catal 217(1):47–58. https://doi.org/10.1016/S0021-9517(03)00035-6

    Article  CAS  Google Scholar 

  23. Burch R (2004) Knowledge and know-how in emission control for mobile applications. Catal Rev Sci Eng 46:271–334. https://doi.org/10.1081/CR-200036718

    Article  CAS  Google Scholar 

  24. Satokawa S, Shibata J, Shimizu KI, Satsuma A, Hattori T, Kojima T (2007) Promotion effect of hydrogen on lean NOx reduction by hydrocarbons over Ag/Al2O3 catalyst. Chem Eng Sci 62:5335–5337. https://doi.org/10.1016/j.ces.2006.12.034

    Article  CAS  Google Scholar 

  25. Breen JP, Burch R, Hill CJ (2009) NOx storage during H2 assisted selective catalytic reduction of NOx reaction over an Ag/Al2O3 catalyst. Catal Today 145:34–37. https://doi.org/10.1016/j.cattod.2008.05.016

    Article  CAS  Google Scholar 

  26. Conesa JM, Morales MV, Lopez-Olmos C, Rodriguez-Ramos I, Guerrero-Ruiz A (2019) Comparative study of Cu, Ag and Ag–Cu catalysts over graphite in the ethanol dehydrogenation reaction: catalytic activity, deactivation and regeneration. Appl Catal A 576:54–64. https://doi.org/10.1016/j.apcata.2019.02.031

    Article  CAS  Google Scholar 

  27. Son IH, Kim MC, Koh HL, Kim KL (2001) On the promotion of Ag/γ-Al2O3 by Cs for the SCR of NO by C3H6. Catal Lett 75:191–197. https://doi.org/10.1023/A:1016796022644

    Article  CAS  Google Scholar 

  28. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems -with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  29. Martínez-Arias A, Fernández-García M, Iglesias-Juez A, Anderson JA, Conesa JC, Soria J (2000) Study of the lean NOx reduction with C3H6 in the presence of water over silver/alumina catalysts prepared from inverse microemulsions. Appl Catal B 28:29–41. https://doi.org/10.1016/S0926-3373(00)00160-0

    Article  Google Scholar 

  30. Richter M, Bentrup U, Eckelt R, Schneider M, Polh MM, Fricke R (2004) The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag/Al2O3. Appl Catal B 51:261–274. https://doi.org/10.1016/j.apcatb.2004.02.015

    Article  CAS  Google Scholar 

  31. Musi A, Massiani P, Brouri D, Trichard JM, Da Costa P (2009) On the characterisation of silver species for SCR of NOx with ethanol. Catal Lett 128:25–30. https://doi.org/10.1007/s10562-008-9694-z

    Article  CAS  Google Scholar 

  32. Xie S, Wang J, He H (2007) Poisoning effect of sulphate on the selective catalytic reduction of NOx by C3H6 over Ag–Pd/Al2O3. J Mol Catal A 266:166–172. https://doi.org/10.1016/j.molcata.2006.10.055

    Article  CAS  Google Scholar 

  33. Shimizu K, Hashimoto M, Shibata J, Hattori T, Satsuma A (2007) Effect of modified-alumina supports on propane–hydrogen-SCR over Ag/alumina. Catal Today 126:266–271. https://doi.org/10.1016/j.cattod.2007.06.026

    Article  CAS  Google Scholar 

  34. Yu Y, Zhao J, Yan Y, Han X, He H (2013) A cyclic reaction pathway triggered by ammonia for the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. Appl Catal B 136–137:103–111. https://doi.org/10.1016/j.apcatb.2013.01.048

    Article  CAS  Google Scholar 

  35. Luo Y, Hao J, Hou Z, Fu L, Li R, Ning P, Zheng X (2004) Influence of preparation methods on selective catalytic reduction of nitric oxides by propene over silver–alumina catalyst. Catal Today 93–95:797–803. https://doi.org/10.1016/j.cattod.2004.06.073

    Article  CAS  Google Scholar 

  36. Schill L, Reddy Putluru SS, Jacobsen CF, Hansen CH, Fehmann R, Jensen AD (2012) Ethanol-selective catalytic reduction of NO by Ag/Al2O3 catalysts: activity and deactivation by alkali salts. Appl Catal B 127:323–329. https://doi.org/10.1016/j.apcatb.2012.08.035

    Article  CAS  Google Scholar 

  37. Kannisto H, Ingelsten HH, Skoglundh M (2009) Ag–Al2O3 catalysts for lean NOx reduction—influence of preparation method and reductant. J Mol Catal A 302(1–2):86–96. https://doi.org/10.1016/j.molcata.2008.12.003

    Article  CAS  Google Scholar 

  38. Kim PS, Kim MK, Cho BK, Nam IS, Oh SH (2013) Effect of H2 on deNO(x) performance of HC-SCR over Ag/Al2O3: morphological, chemical, and kinetic changes. J Catal 301:65–76. https://doi.org/10.1016/j.jcat.2013.01.026

    Article  CAS  Google Scholar 

  39. Furusawa T, Seshan K, Lercher J, Leffers L, Aika KI (2002) Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Appl Catal B 37:205–216. https://doi.org/10.1016/S0926-3373(01)00337-X

    Article  CAS  Google Scholar 

  40. Dai WL, Cao Y, Ren LP, Yang XL, Xu JH, Li HX, He HY, Fan KN (2004) Ag–SiO2–Al2O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol. J Catal 228(1):80–91. https://doi.org/10.1016/j.jcat.2004.08.035

    Article  CAS  Google Scholar 

  41. Kannisto H, Arve K, Pingel T, Hellman A, Harelind H, Eranen K, Olsson E, Murzin MDY (2013) On the performance of Ag/Al2O3 as a HC-SCR catalyst—influence of silver loading, morphology and nature of the reductant. Catal Sci Technol 3(3):644–653. https://doi.org/10.1039/C2CY20594G

    Article  CAS  Google Scholar 

  42. Baek SW, Kim JR, Ihm SK (2004) Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites. Catal Today 93–95:575–581. https://doi.org/10.1016/j.cattod.2004.06.107

    Article  CAS  Google Scholar 

  43. Boutros M, Trichard JM, Da Costa P (2009) Silver supported mesoporous SBA-15 as potential catalysts for SCR NOx by ethanol. Appl Catal B 91:640–648. https://doi.org/10.1016/j.apcatb.2009.07.004

    Article  CAS  Google Scholar 

  44. Kim YC, Park NC, Shin JS, Lee SR, Lee YJ, Moon DJ (2003) Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catal Today 87:153–162. https://doi.org/10.1016/j.cattod.2003.09.012

    Article  CAS  Google Scholar 

  45. Bergeret G, Gallezot P (2008) Particle size and dispersion measurements. In: Handbook of heretogeneous catalysis, vol 2. Wiley-VCH, pp 738–765. https://hal.archives-ouvertes.fr/hal-00308909

  46. Albiter E, Valenzuela MA, Alfaro S, Valverde-Aguilar G, Martínez-Pallares FM (2015) Photocatalytic deposition of Ag nanoparticles on TiO2: metal precursor effect on the structural and photoactivity properties. J Saudi Chem Soc 19:563–573. https://doi.org/10.1016/j.jscs.2015.05.009

    Article  Google Scholar 

  47. Schön G (1973) Esca studies of Ag, Ag2O and AgO. Acta Chem Scand 7:2623–2633. https://doi.org/10.3891/acta.chem.scand.27-2623

    Article  Google Scholar 

  48. Weaver JF, Hoflund GB (1994) Surface characterization study of the thermal decomposition of AgO. J Phys Chem 98:8519–8524. https://doi.org/10.1021/j100085a035

    Article  CAS  Google Scholar 

  49. Gunnarsson F, Kannisto H, Skoglundh M, Härelind H (2014) Improved low-temperature activity of silver–alumina for lean NOx reduction—effects of Ag loading and low-level Pt doping. Appl Catal B 152–153:218–225. https://doi.org/10.1016/j.apcatb.2014.01.043

    Article  CAS  Google Scholar 

  50. Kyriienko P, Popovych N, Soloviev S, Orlyk S, Dzwigaj S (2013) Remarkable activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol. Appl Catal B 140–141:691–699. https://doi.org/10.1016/j.apcatb.2013.04.067

    Article  CAS  Google Scholar 

  51. Shimizu KI, Shibata J, Yoshida H, Satsuma A, Hattori T (2001) Silver–alumina catalysts for selective reduction of NO by higher hydrocarbons: structure of active sites and reaction mechanism. Appl Catal B 30:151–162. https://doi.org/10.1016/S0926-3373(00)00229-0

    Article  CAS  Google Scholar 

  52. Sato K, Yoshinari T, Kintaichi Y, Haneda M, Hamada H (2003) Remarkable promoting effect of rhodium on the catalytic performance of Ag/Al2O3 for the selective reduction of NO with decane. Appl Catal B 44:67–78. https://doi.org/10.1016/S0926-3373(03)00020-1

    Article  CAS  Google Scholar 

  53. Henglein A (1993) Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471. https://doi.org/10.1021/j100123a004

    Article  CAS  Google Scholar 

  54. Lanza R, Pettersson LJ (2011) Silver catalyst for low temperature selective catalytic reduction of NO. In: 22nd North American meeting, Detroit, MI

  55. Stakheev AY, Pributkov PV, Dahl S, Gekas I, Baeva GN, Bragina GO (2009) Two reaction pathways in the selective catalytic reduction of NOx by C6H14 over Ag–Al2O3 with H2 co-feeding. Top Catal 52:1821–1825. https://doi.org/10.1007/s11244-009-9356-4

    Article  CAS  Google Scholar 

  56. Houel V, Millington P, Rajaram R, Tsolakis A (2007) Promoting functions of H2 in diesel-SCR over silver catalysts. Appl Catal B 77:29–34. https://doi.org/10.1016/j.apcatb.2007.07.003

    Article  CAS  Google Scholar 

  57. DiMaggio CL, Fisher GB, Rahmoeller KM, Sellnau M (2009) Dual SCR after treatment for lean NOx reduction. SAE technical paper 01-0277

  58. Pihl JA, Fisher GB, Johnson WL, Toops TJ (2013) NOx reduction and NH3 production over silver–alumina catalyst with oxygenated hydrocarbons. In: AIChE annual meeting, San Francisco, CA

Download references

Acknowledgements

MEHT thanks CONACYT for graduate scholarship. We acknowledge the financial support of CONACYT-through project CB-166363. We thank the Central Laboratory of Electron Microscopy at UAMI, and the XRD Laboratory of the Chemistry Department at UAMI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María E. Hernández-Terán or Gustavo A. Fuentes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Terán, M.E., López Curiel, J.C. & Fuentes, G.A. Study of the Reversibility of the H2 Effect Over Ag/γ-Al2O3 Catalyst During Selective Catalytic Reduction (SCR) of NOx by Propane. Top Catal 65, 1505–1515 (2022). https://doi.org/10.1007/s11244-022-01635-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01635-0

Keywords

Navigation