Skip to main content
Log in

High Yield Silica-Based Emerging Nanoparticles Activities for Hybrid Catalyst Applications

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Today is the era of catalysis, which has a spectacular range of influence in every field of research as they brought about many exciting developments. Among the varieties of catalysts studied, nanocatalysts, in particular, have grabbed the attention of many researchers worldwide since they facilitate environmentally sustainable catalytic processes. Currently, hybrid nanocatalysts made up of organic–inorganic nanomaterials are used for various transformation reactions. Including this, a remarkable number of reports in the literature describe the use of silica N.P.s as solid support for the fabrication of hybrid nanocatalysts. Because of its high natural abundance, unique chemical and physical properties, and easy synthesis and separation, it is considered a promising candidate for the immobilization process. Moreover, it can be used in the bare form and as solid support material for the active catalytic species’ adsorption, enhancing the nanocatalysts’ stability, reactivity, selectivity, recovery, and recyclability. Through this review, the authors attempt to briefly summarize the recent progress made by the heterogeneous Si-based hybrid nanaocatalysts in developing a diverse range of transformation reactions, including coupling, oxidation, reduction multicomponent reaction, and CO2 conversion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sahoo M, Vishwakarma S, Panigrahi C, Kumar J (2021) Nanotechnology: current applications and future scope in food. Food Frontiers 2:3–22

    Article  Google Scholar 

  2. Sobolev K, Gutierrez MF (2021) How nanotechnology can change the concrete world successfully mimicking nature’s bottom-up construction processes is one of the most promising directions. Am Ceram Soc Bull 84:15–17

    Google Scholar 

  3. Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, Horpibulsuk S, Abdul Kadir A (2019) Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials 12:3052

    Article  CAS  Google Scholar 

  4. Pokrajac L, Abbas A, Chrzanowski W, Dias GM, Eggleton BJ, Maguire S, Maine E, Malloy T, Nathwani J, Nazar L, Sips A, Sone J, Berg A, Weiss PS, Mitra S (2021) Nanotechnology for a sustainable future: addressing global challenges with the international network4sustainable nanotechnology. ACS Nano 15:18608–18623

    Article  CAS  Google Scholar 

  5. Tang W, Zhang Y, Zhu G (2022) Pulmonary delivery of mucosal nanovaccines. Nanoscale 14:263–276

    Article  CAS  Google Scholar 

  6. Shah MA, Pirzada BM, Price G, Shibiru AL, Qurashi A (2022) Applications of nanotechnology in smart textile industry: a critical review. J Adv Res 38:55–75

    Article  CAS  Google Scholar 

  7. Muñoz-Écija T, Vargas-Quesada B, Rodríguez ZC (2019) Coping with methods for delineating emerging fields: Nanoscience and nanotechnology as a case study. J Inf 13:100976

    Google Scholar 

  8. Satalkar P, Elger B, Shaw D (2015) Defining nano, nanotechnology and nanomedicine: why should it matter? Sci Eng Ethics 22:1255–1276

    Article  Google Scholar 

  9. Ananikov VP (2019) Organic-inorganic hybrid nanomaterials. Nanomaterial 9:1197–1203

    Article  CAS  Google Scholar 

  10. Ananikov VP, Eremin DB, Yakukhnov SA, Dilman AD, Levin VV, Egorov MP, Karlov SS, Kustov LM, Tarasov AL, Greish AA et al (2017) Organic and hybrid systems: from science to practice. Mendeleev Commun 27:425–438

    Article  CAS  Google Scholar 

  11. Gomez-Romero P (2001) Hybrid organic-inorganic materials in search of synergic activity. Adv Mater 13:163–174

    Article  CAS  Google Scholar 

  12. Gon M, Tanaka K, Chujo Y (2017) Creative synthesis of organic-inorganic molecular hybrid materials. Bull Chem Soc Jpn 90:463–474

    Article  CAS  Google Scholar 

  13. Schubert U (2011) Cluster-based inorganic–organic hybrid materials. Chem Soc Rev 40:575–582

    Article  CAS  Google Scholar 

  14. Rao CNR, Cheetham AK, Thirumurugan A (2008) Hybrid inorganic–organic materials: a new family in condensed matter physics. J Phys Condens Matter 20:083202

    Article  Google Scholar 

  15. Kustov LM (2021) Catalysis by hybrid nanomaterials. Molecules 26:352

    Article  CAS  Google Scholar 

  16. Fechete I, Wang Y, Vedrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189:2–27

    Article  CAS  Google Scholar 

  17. Coperet C, Allouche F, Chan KW, Conley MP, Delley MF, Fedorov A, Moroz IB, Mougel V, Pucino M, Searles K, Yamamoto K, Zhizhko PA (2018) Bridging the gap between industrial and well-defined supported catalysts. Angew Chem Int Ed 57:6398–6440

    Article  CAS  Google Scholar 

  18. Amrute AP, De Bellis J, Felderhoff M, Schuth F (2021) Mechanochemical synthesis of catalytic materials. Chem Eur J 27:6819–6847

    Article  CAS  Google Scholar 

  19. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nanocatalyst in new era. J Saudi Chem Soc 16:307–325

    Article  CAS  Google Scholar 

  20. Pratibha, K. and Rajput, J. (2022) Ch.10—application of silicon-based hybrid nanoparticles in catalysis. In Micro and nano technologies, silicon-based hybrid nanoparticles. Elsevier, pp Pages 199–246. ISBN 9780128240076

  21. Knezevic NZ, Trewyn BG, Lin VS (2011) Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun 47:2817–2819

    Article  CAS  Google Scholar 

  22. Moro AJ, Schmidt J, Doussineau T, Lapresta- Fernandez A, Wegener J, Mohr GJ (2011) Surface-functionalized fluorescent silica nanoparticles for the detection of ATP. Chem Commun 47:6066–6068

    Article  CAS  Google Scholar 

  23. Ou B, Yang G, Xiao Y, Zeng X, Zhou Z, Liu Q, Zhang X, Li D (2013) Covalent functionalization of silica nanoparticle with poly(glycidyl methacrylate) via ATRP at ambient temperature. J Macromol Sci A 50:25–28

    Article  CAS  Google Scholar 

  24. Sharma RK, Sharma S, Dutta S, Zboril R, Gawande MB (2015) Silicananosphere-based organic-inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chem 17:3207–3230

    Article  CAS  Google Scholar 

  25. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–327

    Article  CAS  Google Scholar 

  26. Li Z, Barnes JC, Bosoy A et al (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605

    Article  CAS  Google Scholar 

  27. Isa EDM, Ahmad H, Rahman MBA, Gill MR (2021) Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment. Pharmaceutics 13:1–33

    Google Scholar 

  28. Dayana E, Isa M, Ahmad H et al (2021) Pharmaceutics progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment. mdpi.com. https://doi.org/10.3390/pharmaceutics13020152

    Article  Google Scholar 

  29. Jeelani PG, Mulay P, Venkat R, Ramalingam C (2020) Multifaceted application of silica nanoparticles. Rev Silicon 12:1337–1354

    Article  CAS  Google Scholar 

  30. Bera A, Shah S, Shah M et al (2020) Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids Surfaces A Physicochem Eng Asp 598:124833

    Article  CAS  Google Scholar 

  31. Hadia NJ, Ng YH, Stubbs P, Torsaeter O (2021) High salinity and high temperature stable colloidal silica nanoparticles with wettability alteration ability for EOR applications. mdpi.com. https://doi.org/10.3390/nano11030707

    Article  Google Scholar 

  32. Gogoi S, Barua S, Khan R, Karak N (2019) Silicon-Based Nanomaterials and Their Polymer Nanocomposites. Nanomater and Polymer Nanocomposites. https://doi.org/10.1016/B978-0-12-814615-6.00008-4

    Article  Google Scholar 

  33. McInnes SJP, Voelcker NH (2009) Silicon-polymer hybrid materials for drug delivery. Future Med Chem 1:1051–1074

    Article  CAS  Google Scholar 

  34. Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39

    Article  CAS  Google Scholar 

  35. Li X, Niitsoo O, Couzis A (2013) Electrostatically driven adsorption of silica nanoparticles on functionalized surfaces. J Colloid Interface Sci 394:26–35

    Article  CAS  Google Scholar 

  36. Rovani S, Santos JJ, Corio P, Fungaro DA (2018) Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash. ACS Omega 3(3):2618–2627

    Article  CAS  Google Scholar 

  37. Zidki T, Zhang L, Shafirovich V, Lymar SV (2012) Water oxidation catalyzed by cobalt(II) adsorbed on silica nanoparticles. J Am Chem Soc 134:14275–14278

    Article  CAS  Google Scholar 

  38. Corma A, Garcia H (2006) Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Adv Synth Catal 348:1391–1412

    Article  CAS  Google Scholar 

  39. Li W, Xu Y, Zhou Y, Ma W, Wang S, Dai Y (2012) Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res Lett 7:1–7

    Article  Google Scholar 

  40. Gude K, Narayanan R (2010) Synthesis and characterization of colloidal-supported metal nanoparticles as potential intermediate nanocatalysts. J Phys Chem C 114:6356–6362

    Article  CAS  Google Scholar 

  41. Singh H, Pratibha KA, Kaur Rajput A (2021) Urea chelated autocombused synthesis of BiFeO3 nanoparticles: application as magnetically retriable heterogeneous catalyst for synthesis of pyrano [2,3-c] pyrazoles. Ferroelectrics 583(1):125–142

    Article  CAS  Google Scholar 

  42. Chinchilla R, Nájera C (2014) Chemicals from alkynes with palladium catalysts. Chem Rev 114:1783–1826

    Article  CAS  Google Scholar 

  43. Chinchilla R, Nájera C (2011) Recent advances in Sonogashira reactions. Chem Soc Rev 40:5084–5121

    Article  CAS  Google Scholar 

  44. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  45. Dieck HA, Heck FR (1975) Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives. J Organomet Chem 93:259–263

    Article  CAS  Google Scholar 

  46. Cassar L (1975) Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. J Organomet Chem 93:253–257

    Article  CAS  Google Scholar 

  47. Cortes-Clerget M, Yu J, Kincaid JRA, Walde P, Gallou F, Lipshutz BH (2021) Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chem Sci 12:4237–4266

    Article  CAS  Google Scholar 

  48. Mohajer F, Heravi MM, Zadsirjan V, Poormohammad N (2021) RSC Adv 11:6885–6925

    Article  CAS  Google Scholar 

  49. Tan LM, Sem ZY, W.-Y. Chong WY, X. Liu, Hendra, W. L. Kwan and C.-L. Ken Lee, (2013) Continuous flow sonogashira c-c coupling using a heterogeneous palladium-copper dual reactor. Org Lett 15:65–67

    Article  CAS  Google Scholar 

  50. Newton MA, Ferri D, Mulligan CJ, Alxneit I, Emerich H, Thompson PBJ, Hii KK (2020) In situ study of metal leaching from Pd/Al2O3 induced by K2CO3. Catal Sci Technol 10:466–474

    Article  CAS  Google Scholar 

  51. Mohr Y, Alves-Favaro M, Rajapaksha R, Hisler G, Ranscht A, Samanta P, Lorentz C, Duguet M, Mellot- Draznieks C, Quadrelli EA, Wisser FM, Canivet J (2021) Heterogenization of a molecular Ni catalyst within a porous macroligand for the direct C-H arylation of heteroarenes. ACS Catal 11:3507–3515

    Article  CAS  Google Scholar 

  52. Ferlin F, Sciosci D, Valentini F, Menzio J, Cravotto G, Martina K, Vaccaro L (2021) Si-Gly-CD-PdNPs as a hybrid heterogeneous catalyst for environmentally friendly continuous flow Sonogashira cross-coupling. Green Chem 23:7210

    Article  CAS  Google Scholar 

  53. Sudharsan M, Subramanian S, Amali AJ, Suresh D (2020) Palladium nanoparticles incorporated thiazoline functionalized periodic mesoporous organosilica: efficient catalyst for selective hydrogenation & Csp2–Csp2 bond formation reactions. Chem Select 5:6131–6140

    CAS  Google Scholar 

  54. Veisi H, Tamoradi T, Karmakar B, Hemmati S (2020) Green tea extract-modified silica gel decorated with palladium nanoparticles as a heterogeneous and recyclable nanocatalyst for Buchwald-Hartwig C-N cross-coupling reactions. J Phys Chem Solids 138:109256

    Article  CAS  Google Scholar 

  55. Ashraf MA, Liu Z, Peng WX, Zhou L (2020) Glycerol Cu(II) complex supported on Fe3O4 magnetic nanoparticles: a new and highly efficient reusable catalyst for the formation of aryl-sulfur and aryl-oxygen bonds. Catal Lett 150:1128–1141

    Article  CAS  Google Scholar 

  56. Nagaraju P, Pasha N, Prasad PSS, Lingaiah N (2007) Iron and vanadium containing molybdophosphoric acid catalyst for selective oxidation of alcohols with molecular oxygen. Green Chem 9:1126–1129

    Article  CAS  Google Scholar 

  57. Shi Z, Zhang C, Tang C, Jiao N (2012) Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem Soc Rev 41:3381–3430

    Article  CAS  Google Scholar 

  58. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 43:3480–3524

    Article  CAS  Google Scholar 

  59. Gawande MB, Rathi A, Nogueira ID, Ghumman CAA, Bundaleski N, Teodoro OMND, Branco PS (2012) A recyclable ferrite–co magnetic nanocatalyst for the oxidation of alcohols to carbonyl compounds. ChemPlusChem 77:865–871

    Article  CAS  Google Scholar 

  60. Jia L, Zhang S, Gu F, Ping Y, Guo X, Zhong Z, Su F (2012) Highly selective gas-phase oxidation of benzyl alcohol to benzaldehyde over silver containing hexagonal mesoporous silica. Micropor Mesopor Mat 149:158–165

    Article  CAS  Google Scholar 

  61. Thomas AM, Peter J, Mohan A, Nagappan S, Selvaraj M, Ha C (2021) Dual stimuli-responsive silver nanoparticles decorated SBA-15 hybrid catalyst for selective oxidation of alcohols under ‘mild’ conditions. Micropor Mesopor Mater 311:110697

    Article  CAS  Google Scholar 

  62. Dekamin MG, Alikhani M, Emami A, Ghafuri H, Javanshir S (2016) An efficient catalyst- and solvent-free method for the synthesis of medicinally important dihydropyrano[2,3-c]pyrazole derivatives using ball milling technique. J Iran Chem Soc 13:591–596

    Article  CAS  Google Scholar 

  63. Matos LHS, Masson FT, Simeoni LA, Homem-de-Mello M (2018) Biological activity of dihydropyrimidinone (DHPM) derivatives: a systematic review. Eur J Med Chem 143:1779–1789

    Article  CAS  Google Scholar 

  64. Fard MAD, Ghafuri H, Rashidizadeh A (2019) Sulfonated highly ordered mesoporous graphitic carbon nitride as a super active heterogeneous solid acid catalyst for Biginelli reaction. Microporous Mesoporous Mater 274:83–93

    Article  Google Scholar 

  65. Elhamifar D, Hosseinpoor F, Karimi B, Hajati S (2015) Ionic liquid-based ordered mesoporous organosilica-supported copper as a novel and efficient nanocatalyst for the one-pot synthesis of Biginelli products. Micropor Mesop Mater 204:269–275

    Article  CAS  Google Scholar 

  66. Sharma V, Chitranshi N, Agarwal AK (2014) Significance and biological importance of pyrimidine in the microbial world. Int J Med Chem 2014:1–13

    Google Scholar 

  67. Wan JP, Liu Y (2010) Synthesis of dihydro pyrimidinones and thiones by multicomponent reactions: strategies beyond the classical Biginelli reaction. Synthesis 2010:3943–3953

    Article  Google Scholar 

  68. Heravi MM, Asadi S, Lashkariani BM (2013) Recent progress in asymmetric Biginelli reaction. Mol Divers 17:389–407

    Article  CAS  Google Scholar 

  69. Huang Y, Yang F, Zhu C (2005) Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. J Am Chem Soc 127:16386–16387

    Article  CAS  Google Scholar 

  70. Jadhav CK et al (2019) Efficient rapid access to Biginelli for the multicomponent synthesis of 1, 2, 3, 4-tetrahydropyrimidines in room temperature diisopropylethyl ammonium acetate. ACS Omega 4:22313–22324

    Article  CAS  Google Scholar 

  71. Dekamin MG, Mehdipoor F, Yaghoubi A (2017) 1,3,5-Tris(2-hydroxyethyl) isocyanurate functionalized graphene oxide: a novel and efficient nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. New J Chem 41:6893–6901

    Article  CAS  Google Scholar 

  72. Alirezvani Z, Dekamin MG, Davoodi F, Valiey E (2018) Melamine-functionalized chitosan: a new bio-based reusable bifunctional organocatalyst for the synthesis of cyanocinnamonitrile intermediates and densely functionalized nicotinonitrile derivatives. ChemistrySelect 3:10450–10463

    Article  CAS  Google Scholar 

  73. Alirezvani Z, Dekamin MG, Valiey E (2019) Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: a synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci Rep 9:17758

    Article  Google Scholar 

  74. Alirezvani Z, Dekamin MG, Valiey E (2019) New hydrogen-bond-enriched 1, 3, 5-tris (2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: an efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega 4:20618–20633

    Article  CAS  Google Scholar 

  75. Banakar SH, Dekamin MG, Yaghoubi A (2018) Selective and highly efficient synthesis of xanthenedione or tetraketone derivatives catalyzed by ZnO nanorod-decorated graphene oxide. New J Chem 42:14246–14262

    Article  Google Scholar 

  76. Dekamin MG, Arefi E, Yaghoubi A (2016) Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): a highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles. RSC Adv 6:86982–86988

    Article  CAS  Google Scholar 

  77. Valiey E, Dekamin MG, Alirezvani Z (2019) Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano [2, 3-c] pyrazole and benzylpyrazolyl coumarin derivatives. Int J Biol Macromol 129:407–421

    Article  CAS  Google Scholar 

  78. Sam M, Dekamin MG, Alirezvani Z (2021) Dendrons containing boric acid and 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters. Sci Rep 11:4820

    Article  Google Scholar 

  79. Valiey E, Dekamin MG, Alirezvani Z (2021) Sulfamic acid pyromellitic diamide-functionalized MCM-41 as a multifunctional hybrid catalyst for melting-assisted solvent-free synthesis of bioactive 3,4-dihydropyrimidin-2-(1H)-ones. Sci Rep 11:11199

    Article  CAS  Google Scholar 

  80. Geedkar D, Kumar A, Reen GK, Sharma P (2020) Titania-silica nanoparticles ensemblies assisted heterogeneous catalytic strategy for the synthesis of pharmacologically significant 2,3-diaryl-3,4-dihydroimidazo [4,5-b] indole scaffolds. J Heterocycl Chem 57:1963–1973

    Article  CAS  Google Scholar 

  81. Kohzadian A, Zare A (2020) Effective and rapid synthesis of pyrido[2,3-d:6,5-d’] dipyrimidines catalyzed by a mesoporous recoverable silica-based nanomaterial. SILICON 12:1407–1415

    Article  CAS  Google Scholar 

  82. Naseem K, Begum R, Farooqi ZH (2017) Catalytic reduction of 2-nitroaniline: A review. Environ Sci Pollut Res 24:6446–6460

    Article  CAS  Google Scholar 

  83. Zeynizadeh B, Karami S (2019) Synthesis of Ni nanoparticles anchored on cellulose using different reducing agents and their applications toward reduction of 4-nitrophenol. Polyhedron 166:196–202

    Article  CAS  Google Scholar 

  84. Zhao B, Dong Z, Wang Q, Xu Y, Zhang N, Liu W et al (2020) Highly efficient mesoporous core-shell structured ag@sio2 nanosphere as an environmentally friendly catalyst for hydrogenation of nitrobenzene. Nanomaterials 10(5):883

    Article  CAS  Google Scholar 

  85. Lu X, Baker MA, Anjum DH, Basina G, Hinder SJ, Papawassiliou W, Pell AJ, Karagianni M, Papavassiliou G, Shetty D, Gaber D, Gaber S, Wahedi YA, Polychronopoulou K (2021) Ni2P nanoparticles embedded in mesoporous SiO2 for catalytic hydrogenation of SO2 to elemental S. ACS Appl Nano Mater 4:5665–5676

    Article  CAS  Google Scholar 

  86. Khdary NH, Abdelsalam ME (2020) Polymer-silica nanocomposite membranes for CO2 capturing. Arab J Chem 13:557–567

    Article  CAS  Google Scholar 

  87. Nath N (2020) Conversion of CO2 to high value products. Adv Chem Mater Eng. https://doi.org/10.4018/978-1-5225-8033-1.ch002

    Article  Google Scholar 

  88. Pescarmona PP (2021) Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends. Curr Opin Green Sustain Chem 29:100457

    Article  CAS  Google Scholar 

  89. Tan J, Wang L, Hu YL (2020) Multifunctional periodic mesoporous organosilica supported benzotriazolium ionic liquid as an efficient nanocatalyst for synergistic transformation of CO2 to cyclic carbonates. Chem Select 5:4893–4897

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhendu Chakroborty or Kaushik Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, N., Chakroborty, S., Panda, P. et al. High Yield Silica-Based Emerging Nanoparticles Activities for Hybrid Catalyst Applications. Top Catal 65, 1706–1718 (2022). https://doi.org/10.1007/s11244-022-01623-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01623-4

Keywords

Navigation