Skip to main content
Log in

Effect of Rhenium on the Catalytic Activity of Activated Carbon-Supported Nickel Applied in the Hydrogenation of Furfural and Levulinic Acid

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work evaluates the performance of activated carbon-supported Ni and Re catalysts in the hydrogenation of furfural and levulinic acid. The increase in Re content enhances Ni dispersion, decreases Ni reducibility and increases acidity. The Lewis acidity on the catalysts was attributed to unreduced Ni and Re species, while the Bronsted acidity, to Re–OH species formed in the presence of water. In the furfural hydrogenation, all the bimetallic catalysts were more selective to furfuryl alcohol (86–91%) than the monometallic materials. Low temperature and high pressures enhance selectivity to furfuryl alcohol. Concerning the conversion of levulinic acid to γ-valerolactone, the bimetallic catalysts also showed higher performance than the monometallic materials, with rates of levulinic acid conversion around four times superior. High temperature enhances levulinic acid conversion, and the selectivity to γ-valerolactone does not depend on pressure (> 97% for all conditions). The bimetallic catalyst containing 5.0 wt% Ni and 10.0 wt% Re was the most efficient one for both reactions. In this sense, we prepared this catalyst at different calcination temperatures (350 and 500 °C) and showed this is an important parameter for the catalyst stability. After four reuse cycles, in both reactions, the catalyst calcined at 350 °C lost considerable activity (loss of activity > 50%), while the catalyst calcined at 500 °C was considerably more stable. Catalyst deactivation was caused by leaching of the metallic active phase. The bimetallic Ni–Re/C catalysts calcined at high temperatures are promising materials for the hydrogenation of furfural and levulinic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiménez-Gómez CP, Cecilia JA, Moreno-Tost R, Maireles-Torres P (2017) Selective furfural hydrogenation to furfuryl alcohol using Cu-based catalysts supported on clay minerals. Top Catal 60:1040–1053

    Article  CAS  Google Scholar 

  2. Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC (2016) Furfural production using ionic liquids: a review. Bioresour Technol 202:181–191

    Article  CAS  PubMed  Google Scholar 

  3. Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sustain Energy Rev 51:548–565

    Article  CAS  Google Scholar 

  4. Mariscal R, Maireles-Torres P, Ojeda M, Sábada I, Granados ML (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  5. MacIntosh KL, Beaumont SK (2020) Nickel-catalysed vapour-phase hydrogenation of furfural, insights into reactivity and deactivation. Top Catal 63:1446–1462

    Article  CAS  Google Scholar 

  6. Salnikova KE, Matveeva VG, Larichev YV, Bykov AV, Demidenko GN, Shkileva IP, Sulman MG (2019) The liquid phase catalytic hydrogenation of furfural to furfuryl alcohol. Catal Today 329:142–148

    Article  CAS  Google Scholar 

  7. He D, Horváth IT (2017) Application of silica-supported Shvo’s catalysts for transfer hydrogenation of levulinic acid with formic acid. J Organomet Chem 847:263–269

    Article  CAS  Google Scholar 

  8. Muñoz-Olasagasti M, Sañudo-Mena A, Cecilia JA, Granados ML, Maireles-Torres P, Mariscal R (2019) Direct conversion of levulinic acid into valeric biofuels using Pd supported over zeolites as catalysts. Top Catal 62:579–588

    Article  CAS  Google Scholar 

  9. Yan K, Jarvis C, Gu J, Yan Y (2015) Production and catalytic transformation of levulinic acid: a platform for speciality chemicals and fuels. Renew Sustain Energy Rev 51:986–997

    Article  CAS  Google Scholar 

  10. Nemanashi M, Noh JH, Meijboom R (2018) Hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by mesoporous supported dendrimer-derived Ru and Pt catalysts: an alternative method for the production of renewable biofuels. Appl Catal A 550:77–89

    Article  CAS  Google Scholar 

  11. Ramirez-Barria C, Isaacs M, Wilson K, Guerrero-Ruiz A, Rodríguez-Ramos I (2018) Optimization of ruthenium based catalysts for the aqueous phase hydrogenation of furfural to furfuryl alcohol. Appl Catal A 563:177–184

    Article  CAS  Google Scholar 

  12. Protsenko II, Nikoshvili LZ, Matveeva VG, Sulman EM (2020) Kinetic modelling of levulinic acid hydrogenation over Ru-containing polymeric catalyst. Top Catal 63:243–253

    Article  CAS  Google Scholar 

  13. Khromova SA, Bykova MV, Bulavchenko OA, Ermakov DY, Saraev AA, Kaichev VV, Venderbosch RH, Yakovlev VA (2016) Furfural hydrogenation to furfuryl alcohol over bimetallic Ni–Cu sol–gel catalyst: a model reaction for conversion of oxygenates in pyrolysis liquids. Top Catal 59:1413–1423

    Article  CAS  Google Scholar 

  14. Gupta SSR, Kantam ML (2018) Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catal Today 309:189–194

    Article  CAS  Google Scholar 

  15. Wang H, Chen C, Zhang H, Wang G, Zhao H (2018) An efficient and reusable bimetallic Ni3FeNPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone. Cuihua Xuebao 39:1599–1607

    CAS  Google Scholar 

  16. Shi D, Yang Q, Peterson C, Lamic-Humblot AF, Girardon JS, Griboval-Constant A, Stievano L, Sougrati MT, Briois V, Bagot PAJ, Wojcieszak R, Paul S, Marceau E (2019) Bimetallic Fe–Ni/SiO2 catalysts for furfural hydrogenation: identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catal Today 334:162–172

    Article  CAS  Google Scholar 

  17. Ma L, Yan L, Lu AH, Ding Y (2018) Effect of Re promoter on the structure and catalytic performance of Ni–Re/Al2O3 catalysts for the reductive amination of monoethanolamine. RSC Adv 8:8152–8163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Lu F, Yu W, Chen J, Gao J, Xu J (2014) Selective hydrogenative cleavage of C–C bonds in sorbitol using Ni–Re/C catalyst under nitrogen atmosphere. Catal Today 234:107–112

    Article  CAS  Google Scholar 

  19. Kim I, Kim J, Lee D (2014) A comparative study on catalytic properties of solid acid catalysts for glycerol acetylation at low temperatures. Appl Catal B 148–149:295–303

    Article  CAS  Google Scholar 

  20. Putrakumar B, Nagaraju N, Kumar VP, Chary KVR (2015) Hydrogenation of levulinic acid to γ-valerolactone over copper catalysts supported on γ-Al2O3. Catal Today 250:209–217

    Article  CAS  Google Scholar 

  21. Ma L, Yan L, Lu AH, Ding Y (2019) Effects of Ni particle size on amination of monoethanolamine over Ni–Re/SiO2 catalysts. Chin J Catal 40:567–579

    Article  CAS  Google Scholar 

  22. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118

    Article  CAS  Google Scholar 

  23. Yoshikawa N, Ishizuka E, Mashiko KI, Taniguchi S (2007) Difference in carbo-thermal reduction reaction kinetics of NiO in microwave E- and H-fields. Mater Lett 61:2096–2099

    Article  CAS  Google Scholar 

  24. Yu W, Xu J, Ma H, Chen C, Zhao J, Miao H, Song Q (2010) A remarkable enhancement of catalytic activity for KBH4 treating the carbothermal reduced Ni/AC catalyst in glycerol hydrogenolysis. Catal Commun 11:493–497

    Article  CAS  Google Scholar 

  25. Bakhshandeh S, Setoudeh N, Zamani MAA, Mohassel A (2018) Carbothermic reduction of mechanically activated NiO-carbon mixture: non-isothermal kinetics. J Min Metall Sect B 54:313–322

    Article  CAS  Google Scholar 

  26. Yang F, Liu D, Wang H, Liu X, Han J, Ge Q, Zhu X (2017) Geometric and electronic effects of bimetallic Ni–Re catalysts for selective deoxygenation of m-cresol to toluene. J Catal 349:84–97

    Article  CAS  Google Scholar 

  27. Epishin A, Brückner U, Portella PD, Link T (2003) Influence of small rhenium additions on the lattice spacing of nickel solid solution. Scr Mater 48:455–459

    Article  CAS  Google Scholar 

  28. Juškenas R, Valsiunas I, Pakštas V, Giraitis R (2009) On the state of W in electrodeposited Ni–W alloys. Electrochim Acta 54:2616–2620

    Article  CAS  Google Scholar 

  29. Ishihara T, Eguchi K, Arai H (1987) Hydrogenation of carbon monoxide over SiO2-supported FeCo, CoNi and NiFe bimetallic catalysts. Appl Catal 30:225–238

    Article  CAS  Google Scholar 

  30. Piskun AS, Ftouni J, Tang Z, Weckhuysen BM, Bruijnincx PCA, Heeres HJ (2018) Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: effect of catalyst synthesis protocols on activity. Appl Catal A 549:197–206

    Article  CAS  Google Scholar 

  31. Van Steen E, Prinsloo FF (2002) Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts. Catal Today 71:327–334

    Article  Google Scholar 

  32. Ermakova MA, Ermakov DY (2002) Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition. Catal Today 77:225–235

    Article  CAS  Google Scholar 

  33. Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J Catal 277:1–13

    Article  CAS  Google Scholar 

  34. de Souza RL, Yu H, Rataboul F, Essayem N (2012) 5-Hydroxymethylfurfural (5-HMF) production from hexoses: limits of heterogeneous catalysis in hydrothermal conditions and potential of concentrated aqueous organic acids as reactive solvent system. Challenges 3:212–232

    Article  Google Scholar 

  35. Bare SR, Kelly SD, D.Vila F, Boldingh E, Karapetrova E, Kas J, Mickelson GE, Modica FS, Yang N, Rehr J (2011) Experimental (XAS, STEM, TPR, and XPS) and theoretical (DFT) characterization of supported rhenium catalysts. J Phys Chem C 115:5740–5755

    Article  CAS  Google Scholar 

  36. Toledo F, Ghampson IT, Sepúlveda C, García R, Fierro JLG, Videla A, Serpell R, Escalona N (2019) Effect of Re content and support in the liquid phase conversion of furfural to furfuryl alcohol and 2-methyl furan over ReOx catalysts. Fuel 242:532–544

    Article  CAS  Google Scholar 

  37. Hadjiivanov K, Mihaylov M, Klissurski D, Stefanov P, Abadjieva N, Vassileva E, Mintchev L (1999) Characterization of Ni/SiO2 catalysts prepared by successive deposition and reduction of Ni2+ ions. J Catal 185:314–323

    Article  CAS  Google Scholar 

  38. Lin L, Ge Y, Zhang H, Wang M, Xiao D, Ma D (2021) Heterogeneous catalysis in water. JACS Au 1:1834–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciftci A, Ligthart M, Sen A, van Hoof A, Friedrich H, Hensen E (2014) Pt–Re synergy in aqueous-phase reforming of glycerol and the water-gas shift reaction. J Catal 311:88–101

    Article  CAS  Google Scholar 

  40. Nakagawa Y, Tomishige K (2012) Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136–143

    Article  CAS  Google Scholar 

  41. Nakagawa Y, Tamura M, Tomishige K (2015) Catalytic conversions of furfural to pentanediols. Catal Surv Asia 19:249–256

    Article  CAS  Google Scholar 

  42. Liu H, Huang Z, Kang H, Xia C, Chen J (2016) Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts. Cuihua Xuebao 37:700–710

    CAS  Google Scholar 

  43. Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S (2018) How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem Rev 118:11023–11117

    Article  CAS  PubMed  Google Scholar 

  44. Xiong K, Wan W, Chen JG (2016) Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces. Surf Sci 652:91–97

    Article  CAS  Google Scholar 

  45. Guo J, Xu G, Han Z, Zhang Y, Fu Y, Guo Q (2014) Selective conversion of furfural to cyclopentanone with Cuznal catalysts. ACS Sustain Chem Eng 2:2259–2266

    Article  CAS  Google Scholar 

  46. Fang R, Liu H, Luque R, Li Y (2015) Efficient and selective hydrogenation of biomass-derived furfural to cyclopentanone using Ru catalysts. Green Chem 17:4183–4188

    Article  CAS  Google Scholar 

  47. Hengst K, Schubert M, Carvalho HWP, Lu C, Kleist W, Grunwaldt JD (2015) Synthesis of γ-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts. Appl Catal A 502:18–26

    Article  CAS  Google Scholar 

  48. Li C, Ni XJ, Di X, Liang CH (2018) Aqueous phase hydrogenation of levulinic acid to γ-valerolactone on supported Ru catalysts prepared by microwave-assisted thermolytic method. Ranliao Huaxue Xuebao 46:161–170

    CAS  Google Scholar 

  49. Jiang K, Sheng D, Zhang Z, Fu J, Hou Z, Lu X (2016) Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst. Catal Today 274:55–59

    Article  CAS  Google Scholar 

  50. Fang S, Cui Z, Zhu Y, Wang C, Bai J, Zhang X, Xu Y, Liu Q, Chen L, Zhang Q, Ma L (2019) In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to γ-valerolactone. J Energy Chem 37:204–214

    Article  Google Scholar 

Download references

Funding

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [Grant No. 001], Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro [Grant No. E-26/202.919/2019] and by the French Government through the Programme Investissement d’Avenir (I-SITE ULNE / ANR-16-IDEX-0004 ULNE) managed by the Agence Nationale de la Recherche, CNRS, Métropole Européen de Lille (MEL) and Region Hauts-de-France for “CatBioInnov” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio S. Toniolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Abreu, C.R.A., Simon, P., Wojcieszak, R. et al. Effect of Rhenium on the Catalytic Activity of Activated Carbon-Supported Nickel Applied in the Hydrogenation of Furfural and Levulinic Acid. Top Catal 65, 902–914 (2022). https://doi.org/10.1007/s11244-022-01605-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01605-6

Keywords

Navigation