Skip to main content
Log in

Surface Functionalization of Mesoporous Co3O4 and MnOx with Sodium for the Soot Oxidation Reaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The synthesis, characterization, and catalytic evaluation of two different mesoporous transition metal oxides (m-Co3O4 and m-MnOx) for the soot oxidation reaction are reported. The effect of sodium addition on the soot oxidation was studied, finding that the optimal sodium load for enhancing the catalytic performance of cobalt and manganese oxides was 7 wt%. Structural, morphological, and textural properties were studied and characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), and physical nitrogen adsorption/desorption curves. Moreover, inductively coupled plasma mass spectrometry (ICP-MS) and X-ray photoelectron spectroscopy (XPS) were performed to explore the chemical species present in the materials. The results show that either the 7Na/m-Co3O4 or 7Na/m-MnOx catalyst presented remarkable enhanced activity for the soot oxidation reaction, reaching 50% of soot conversion at 278 and 285 °C, respectively. The enhanced catalytic activity of these catalysts could be explained by the addition of the alkaline metal ion, which improved the soot/catalyst contact. Furthermore, the interaction between sodium and Co or Mn promoted the production of oxygen vacancies and, consequently, the mobility of lattice oxygen. The 7Na/m-Co3O4 catalyst showed resistance to deactivation for five cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Assimakopoulos MN, Dounis A, Spanou A, Santamouris M (2013) Indoor air quality in a metropolitan area metro using fuzzy logic assessment system. Sci Total Environ 449:461–469. doi:https://doi.org/10.1016/j.scitotenv.2012.12.043

    Article  CAS  PubMed  Google Scholar 

  2. Mabahwi NAB, Leh OLH, Omar D (2014) Human health and wellbeing: human health effect of air pollution. Procedia Soc Behav Sci 153:221–229. https://doi.org/10.1016/j.sbspro.2014.10.056

    Article  Google Scholar 

  3. Zhai G, Wang J, Chen Z, An W, Men Y (2018) Boosting soot combustion efficiency of Co3O4 nanocrystals via tailoring crystal facets. Chem Eng J 337:488–498. doi:https://doi.org/10.1016/j.cej.2017.12.141

    Article  CAS  Google Scholar 

  4. Wagloehner S, Nitzer-Noski M, Kureti S (2015) Oxidation of soot on manganese oxide catalysts. Chem Eng J 259:492–504. doi:https://doi.org/10.1016/j.cej.2014.08.021

    Article  CAS  Google Scholar 

  5. Shang Z, Sun M, Chang S, Che X, Cao X, Wang L, Guo Y, Zhan W, Guo Y, Lu G (2017) Activity and stability of Co3O4-based catalysts for soot oxidation: the enhanced effect of Bi2O3 on activation and transfer of oxygen. Appl Catal B 209:33–44. https://doi.org/10.1016/j.apcatb.2017.02.074

    Article  CAS  Google Scholar 

  6. Guillén-Hurtado N, García-García A, Bueno-López A (2015) Active oxygen by Ce–Pr mixed oxide nanoparticles outperform diesel soot combustion Pt catalysts. Appl Catal B 174–175:60–66. doi:https://doi.org/10.1016/j.apcatb.2015.02.036

    Article  CAS  Google Scholar 

  7. Jiang Z, Zhu Z, Guo W, Chen M, Shangguan W (2017) Surface sodium functionalization of ordered mesoporous Co3O4 controls the enhanced simultaneous catalytic removal of soot and NOx. J Mater Chem A 5(39):20696–20708. doi:https://doi.org/10.1039/C7TA03071A

    Article  CAS  Google Scholar 

  8. Putla S, Amin MH, Reddy BM, Nafady A, Al Farhan KA, Bhargava SK (2015) MnOx nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl Mater Interfaces 7(30):16525–16535. https://doi.org/10.1021/acsami.5b03988

    Article  CAS  PubMed  Google Scholar 

  9. Tang WX, Yao MS, Deng YZ, Li XF, Han N, Wu XF, Chen YF (2016) Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: a heterogeneous interface for remarkably promoting catalytic oxidation activity. Chem Eng J 306:709–718. https://doi.org/10.1016/j.cej.2016.07.107

    Article  CAS  Google Scholar 

  10. Medina JC, Rodil SE, Zanella R (2020) Synthesis of a CeO2/Co3O4 catalyst with a remarkable performance for the soot oxidation reaction. Catal Sci Technol 10(3):853–863. doi:https://doi.org/10.1039/C9CY01821B

    Article  CAS  Google Scholar 

  11. Lee C, Jeon Y, Hata S, Park J-I, Akiyoshi R, Saito H, Teraoka Y, Shul Y-G, Einaga H (2016) Three-dimensional arrangements of perovskite-type oxide nano-fiber webs for effective soot oxidation. Appl Catal B 191:157–164. doi:https://doi.org/10.1016/j.apcatb.2016.03.001

    Article  CAS  Google Scholar 

  12. Torregrosa-Rivero V, Albaladejo-Fuentes V, Sánchez-Adsuar M-S, Illán-Gómez M-J (2017) Copper doped BaMnO3 perovskite catalysts for NO oxidation and NO2-assisted diesel soot removal. RSC Adv 7(56):35228–35238. doi:https://doi.org/10.1039/C7RA04980C

    Article  CAS  Google Scholar 

  13. Xiong J, Wu Q, Mei X, Liu J, Wei Y, Zhao Z, Wu D, Li J (2018) Fabrication of Spinel-Type PdxCo3–xO4 Binary Active Sites on 3D Ordered Meso-macroporous Ce-Zr-O2 with Enhanced Activity for Catalytic Soot Oxidation. ACS Catal 8(9):7915–7930. doi:https://doi.org/10.1021/acscatal.8b01924

    Article  CAS  Google Scholar 

  14. Wang J, Yang G, Cheng L, Shin EW, Men Y (2015) Three-dimensionally ordered macroporous spinel-type MCr2O4 (M = Co, Ni, Zn, Mn) catalysts with highly enhanced catalytic performance for soot combustion. Catal Sci Technol 5(9):4594–4601. doi:https://doi.org/10.1039/C5CY00761E

    Article  CAS  Google Scholar 

  15. Piumetti M, Bensaid S, Russo N, Fino D (2015) Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl Catal B 165:742–751. https://doi.org/10.1016/j.apcatb.2014.10.062

    Article  CAS  Google Scholar 

  16. Li S, Yan S, Xia Y, Cui B, Pu Y, Ye Y, Wang D, Liu Y-Q, Chen B (2019) Oxidative reactivity enhancement for soot combustion catalysts by co-doping silver and manganese in ceria. Appl Catal A 570:299–307. doi:https://doi.org/10.1016/j.apcata.2018.11.033

    Article  CAS  Google Scholar 

  17. Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) A mechanistic study on soot oxidation over CeO2–Ag catalyst with ‘rice-ball’ morphology. J Catal 282(2):289–298. doi:https://doi.org/10.1016/j.jcat.2011.07.001

    Article  CAS  Google Scholar 

  18. Kurnatowska M, Mista W, Mazur P, Kepinski L (2014) Nanocrystalline Ce1–xRuxO2 – Microstructure, stability and activity in CO and soot oxidation. Appl Catal B 148–149:123–135. doi:https://doi.org/10.1016/j.apcatb.2013.10.047

    Article  CAS  Google Scholar 

  19. Zhai G, Wang J, Chen Z, Yang S, Men Y (2019) Highly enhanced soot oxidation activity over 3DOM Co3O4-CeO2 catalysts by synergistic promoting effect. J Hazard Mater 363:214–226. doi:https://doi.org/10.1016/j.jhazmat.2018.08.065

    Article  CAS  PubMed  Google Scholar 

  20. Bai B, Li J (2014) Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal 4(8):2753–2762. https://doi.org/10.1021/cs5006663

    Article  CAS  Google Scholar 

  21. Shan W, Yang L, Ma N, Yang J (2012) Catalytic activity and stability of K/CeO2 catalysts for diesel soot oxidation. Chin J Catal 33(4):970–976. https://doi.org/10.1016/S1872-2067(11)60385-9

    Article  CAS  Google Scholar 

  22. Castoldi L, Matarrese R, Lietti L, Forzatti P (2009) Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Appl Catal B 90(1):278–285. doi:https://doi.org/10.1016/j.apcatb.2009.03.022

    Article  CAS  Google Scholar 

  23. Shangguan WF, Teraoka Y, Kagawa S (1998) Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl Catal B 16(2):149–154. doi:https://doi.org/10.1016/S0926-3373(97)00068-4

    Article  CAS  Google Scholar 

  24. Sui L, Yu L, Zhang Y (2006) The effects of alkaline earth metals on catalytic activities of K–Sm-based catalysts for diesel soot oxidation. Energy Fuels 20(4):1392–1397. https://doi.org/10.1021/ef060049b

    Article  CAS  Google Scholar 

  25. Li Y, Zhang C, He H, Zhang J, Chen M (2016) Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature. Catal Sci Technol 6(7):2289–2295. doi:https://doi.org/10.1039/C5CY01521A

    Article  CAS  Google Scholar 

  26. Camposeco R, Castillo S, Nava N, Zanella R (2020) Boosting of soot combustion on alkaline Mn/ZrO2 nanostructures. Top Catal. https://doi.org/10.1007/s11244-020-01224-z

    Article  Google Scholar 

  27. Álvarez-Docio CM, Portela R, Reinosa JJ, Rubio-Marcos F, Fernández JF (2020) Pt mechanical dispersion on non-porous alumina for soot oxidation. Catal Commun 140:105999. doi:https://doi.org/10.1016/j.catcom.2020.105999

    Article  CAS  Google Scholar 

  28. Lee C, Park J-I, Shul Y-G, Einaga H, Teraoka Y (2015) Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation. Appl Catal B 174–175:185–192. doi:https://doi.org/10.1016/j.apcatb.2015.03.008

    Article  CAS  Google Scholar 

  29. An H, Kilroy CM, McGinn PJ (2004) Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion. Catal Today 98:423–429

    Article  CAS  Google Scholar 

  30. Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C: Solid State Phys 21(7):L199–L201. doi:https://doi.org/10.1088/0022-3719/21/7/007

    Article  Google Scholar 

  31. Li J, Lu G, Wu G, Mao D, Guo Y, Wang Y, Guo Y (2014) Effect of TiO2 crystal structure on the catalytic performance of Co3O4/TiO2 catalyst for low-temperature CO oxidation. Catal Sci Technol 4(5):1268–1275. doi:https://doi.org/10.1039/C3CY01004J

    Article  CAS  Google Scholar 

  32. Liu Q, Wang L-C, Chen M, Cao Y, He H-Y, Fan K-N (2009) Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J Catal 263(1):104–113. doi:https://doi.org/10.1016/j.jcat.2009.01.018

    Article  CAS  Google Scholar 

  33. Bernardini S, Bellatreccia F, Casanova Municchia A, Della Ventura G, Sodo A (2019) Raman spectra of natural manganese oxides. J Raman Spectrosc 50(6):873–888. doi:https://doi.org/10.1002/jrs.5583

    Article  CAS  Google Scholar 

  34. Buciuman F, Patcas F, Craciun R, Zahn RT D (1999) Vibrational spectroscopy of bulk and supported manganese oxides. Phys Chem Chem Phys 1(1):185–190. doi:https://doi.org/10.1039/A807821A

    Article  CAS  Google Scholar 

  35. Gao T, Fjellvåg H, Norby P (2009) A comparison study on Raman scattering properties of α- and β-MnO2. Anal Chim Acta 648(2):235–239. doi:https://doi.org/10.1016/j.aca.2009.06.059

    Article  CAS  PubMed  Google Scholar 

  36. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7):2717–2730. doi:https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  37. Gupta RP, Sen SK (1975) Calculation of multiplet structure of core P-vacancy levels.2. Phys Rev B 12(1):15–19

    Article  CAS  Google Scholar 

  38. Shen Q, Wu MF, Wang H, He C, Hao ZP, Wei W, Sun YH (2015) Facile synthesis of catalytically active CeO2 for soot combustion. Catal Sci Technol 5(3):1941–1952

    Article  CAS  Google Scholar 

  39. Zhang W, Niu X, Chen L, Yuan F, Zhu Y (2016) Soot combustion over nanostructured ceria with different morphologies. Sci Rep 6(1):29062. https://doi.org/10.1038/srep29062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nesbitt HW, Banerjee D (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83(3–4):305–315

    Article  CAS  Google Scholar 

  41. Banerjee D, Nesbitt HW (1999) XPS study of reductive dissolution of birnessite by oxalate: rates and mechanistic aspects of dissolution and redox processes. Geochim Cosmochim Ac 63(19–20):3025–3038

    Article  CAS  Google Scholar 

  42. Banerjee D, Nesbitt HW (2001) XPS study of dissolution of birnessite by humate with constraints on reaction mechanism. Geochim Cosmochim Ac 65(11):1703–1714

    Article  CAS  Google Scholar 

  43. Xu H, Jia J, Guo Y, Qu Z, Liao Y, Xie J, Shangguan W, Yan N (2018) Design of 3D MnO2/carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury. J Hazard Mater 342:69–76. https://doi.org/10.1016/j.jhazmat.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  44. Portillo-Vélez NS, Zanella R (2020) Comparative study of transition metal (Mn, Fe or Co) catalysts supported on titania: effect of Au nanoparticles addition towards CO oxidation and soot combustion reactions. Chem Eng J 385:123848. https://doi.org/10.1016/j.cej.2019.123848

    Article  CAS  Google Scholar 

  45. Jampaiah D, Velisoju VK, Venkataswamy P, Coyle VE, Nafady A, Reddy BM, Bhargava SK (2017) Nanowire morphology of mono- and bidoped α-MnO2 catalysts for remarkable enhancement in soot oxidation. ACS Appl Mater Interfaces 9(38):32652–32666. https://doi.org/10.1021/acsami.7b07656

    Article  CAS  PubMed  Google Scholar 

  46. Jakubek T, Kaspera W, Legutko P, Stelmachowski P, Kotarba A (2015) Surface versus bulk alkali promotion of cobalt-oxide catalyst in soot oxidation. Catal Commun 71:37–41. doi:https://doi.org/10.1016/j.catcom.2015.08.014

    Article  CAS  Google Scholar 

  47. Wang Y, Zhang L, Zhang C, Xu X, Xie Y, Chen W, Wang J, Zhang R (2020) Promoting the generation of active oxygen over Ag-modified nanoflower-like α-MnO2 for soot oxidation: experimental and DFT studies. Ind Eng Chem Res 59(22):10407–10417. https://doi.org/10.1021/acs.iecr.0c01308

    Article  CAS  Google Scholar 

  48. Liu G, Yu J, Chen L, Feng N, Meng J, Fang F, Zhao P, Wang L, Wan H, Guan G (2019) Promoting diesel soot combustion efficiency over hierarchical brushlike α-MnO2 and Co3O4 nanoarrays by improving reaction sites. Ind Eng Chem Res 58(31):13935–13949. https://doi.org/10.1021/acs.iecr.9b02155

    Article  CAS  Google Scholar 

  49. Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A 509:75–96. https://doi.org/10.1016/j.apcata.2015.10.016

    Article  CAS  Google Scholar 

  50. Xia Y, Xia L, Liu Y, Yang T, Deng J, Dai H (2018) Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO2 nanotubes. J Environ Sci 64:276–288. doi:https://doi.org/10.1016/j.jes.2017.06.025

    Article  CAS  Google Scholar 

  51. Zhao H, Zhou X, Wang M, Xie Z, Chen H, Shi J (2017) Highly active MnOx–CeO2 catalyst for diesel soot combustion. RSC Adv 7(6):3233–3239. doi:https://doi.org/10.1039/C6RA25738K

    Article  CAS  Google Scholar 

  52. Wang L, Wu Y, Feng N, Meng J, Wan H, Guan G (2016) Accelerated synthesis of MnO2 nanocomposites by acid-free hydrothermal route for catalytic soot combustion. RSC Adv 6(55):50288–50296. doi:https://doi.org/10.1039/C6RA02045C

    Article  CAS  Google Scholar 

  53. Cheng L, Men Y, Wang J, Wang H, An W, Wang Y, Duan Z, Liu J (2017) Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl Catal B 204:374–384. doi:https://doi.org/10.1016/j.apcatb.2016.11.041

    Article  CAS  Google Scholar 

  54. Miceli P, Bensaid S, Russo N, Fino D (2014) CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact. Nanoscale Res Lett 9(1):254. doi:https://doi.org/10.1186/1556-276x-9-254

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bensaid S, Russo N, Fino D (2013) CeO2 catalysts with fibrous morphology for soot oxidation: The importance of the soot–catalyst contact conditions. Catal Today 216:57–63. doi:https://doi.org/10.1016/j.cattod.2013.05.006

    Article  CAS  Google Scholar 

  56. Krishna K, Bueno-López A, Makkee M, Moulijn JA (2007) Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2. Appl Catal B 75(3):189–200. doi:https://doi.org/10.1016/j.apcatb.2007.04.010

    Article  CAS  Google Scholar 

  57. Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B 146:1–11. doi:https://doi.org/10.1016/j.apcatb.2013.02.033

    Article  CAS  Google Scholar 

  58. Tang W, Wu X, Li D, Wang Z, Liu G, Liu H, Chen Y (2014) Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: effect of calcination temperature and preparation method. J Mater Chem A 2(8):2544–2554. doi:https://doi.org/10.1039/C3TA13847J

    Article  CAS  Google Scholar 

  59. Gálvez ME, Ascaso S, Moliner R, Lázaro MJ (2013) Influence of the alkali promoter on the activity and stability of transition metal (Cu, Co, Fe) based structured catalysts for the simultaneous removal of soot and NOx. Top Catal 56(1):493–498. https://doi.org/10.1007/s11244-013-0004-7

    Article  CAS  Google Scholar 

  60. Pisarello ML, Milt V, Peralta MA, Querini CA, Miró EE (2002) Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts. Catal Today 75(1):465–470. doi:https://doi.org/10.1016/S0920-5861(02)00097-4

    Article  CAS  Google Scholar 

  61. Jakubek T, Kaspera W, Legutko P, Stelmachowski P, Kotarba A (2016) How to efficiently promote transition metal oxides by alkali towards catalytic soot oxidation. Top Catal 59(10):1083–1089. https://doi.org/10.1007/s11244-016-0595-x

    Article  CAS  Google Scholar 

  62. Li Q, Wang X, Xin Y, Zhang Z, Zhang Y, Hao C, Meng M, Zheng L, Zheng L (2014) A unified intermediate and mechanism for soot combustion on potassium-supported oxides. Sci Rep 4(1):4725. doi:https://doi.org/10.1038/srep04725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ogura M, Kimura R, Ushiyama H, Nikaido F, Yamashita K, Okubo T (2014) Carbonate-promoted catalytic activity of potassium cations for soot combustion by gaseous oxygen. ChemCatChem 6(2):479–484. https://doi.org/10.1002/cctc.201300736

    Article  CAS  Google Scholar 

  64. Wu L, Tong S, Ge M (2013) Heterogeneous reaction of NO2 on Al2O3: the effect of temperature on the nitrite and nitrate formation. J Phys Chem A 117(23):4937–4944. https://doi.org/10.1021/jp402773c

    Article  CAS  PubMed  Google Scholar 

  65. Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) FT-IR and TPD investigation of the NOx storage properties of BaO/Al2O3 and Pt–BaO/Al2O3 catalysts. J Phys Chem B 105(51):12732–12745. https://doi.org/10.1021/jp012702w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through the A1-S-18269 and 299703 Grants and by the Dirección General de Asuntos del Personal Académico (DGAPA)-UNAM through the IN103719 Grant. We acknowledge V. Maturano, A. Tejeda, and J. Romero for their technical assistance. J. C. Medina acknowledges CONACYT for his postdoctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Zanella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10076.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, J.C., Miguel-Lopez, O., Rodil, S.E. et al. Surface Functionalization of Mesoporous Co3O4 and MnOx with Sodium for the Soot Oxidation Reaction. Top Catal 65, 766–778 (2022). https://doi.org/10.1007/s11244-022-01595-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01595-5

Keywords

Navigation