Skip to main content
Log in

Cu(I)-Assisted Addition of Li- or Zn-Organometallics to Carbonyl Compounds: Learning from Analogies and Differences Between Intermediates and Transition States

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Organocopper species are important intermediates in organic synthesis, even when Cu is used in sub-stoichiometric amounts. Despite considerable computational and experimental works, species encountered in catalytic processes are not well characterized and the influence of the experimental conditions not well understood. In this work, we compare the pathways of C–C bond formation involving Cu(I) intermediates formed from Zn and Li organometallic species, in catalytic and stoichiometric versions, respectively. These reactions have been previously studied in part but have not been compared in details. In fact, these two seemingly drastically different systems for copper-assisted C–C bond formation have analogies. They both occur by way of addition of organic nucleophiles to carbonyl compounds. They both require transfer of the organic nucleophile from Li or Zn to Cu within a “Mixed AggregAte”. The calculations highlight how the solvent and substrate coordination to Li and Zn manipulate in diverse ways the formation of the most active intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information file. Supplementary information contains tables giving information on the energy profiles and essential structural data. Cartesian coordinates and SCF energies for all structures included in the text are provided.

Code Availability

All codes used in this article are commercially available.

References

  1. Woodward S (2014). In: Alexakis A, Krause N, Woodward S (eds) Copper-catalyzed asymmetric synthesis. Wiley, New York

    Google Scholar 

  2. Woodward S (2000) Chem Soc Rev 29:393–401

    Article  CAS  Google Scholar 

  3. Von Rekowski F, Koch C, Gschwind RM (2014) J Am Chem Soc 136:11389–11395

    Article  Google Scholar 

  4. Gschwind RM (2008) Chem Rev 2008(108):3029–3053

    Article  Google Scholar 

  5. Krause N, Wagner R, Gerold A (1994) J Am Chem Soc 116:381–382

    Article  CAS  Google Scholar 

  6. Lecachey B, Palais L, de Courcy B, Bouaouli S, Durandetti M, Oulyadi H, Harisson-Marchand A, Maddaluno J, Gérard H, Vrancken E, Campagne JM (2021) Chem Eur J 27:7942–7950

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura E, Mori S (2000) Angew Chem Int Ed 39:3750–3771

    Article  CAS  Google Scholar 

  8. Mori S, Uerdingen M, Krause N, Morokuma K (2005) Angew Chem Int Ed 44:4715–4719

    Article  CAS  Google Scholar 

  9. Welker M, Woodward S, Veiros LF, Calhorda MJ (2010) Chem Eur J 16:5620–5629

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura E, Morokuma K (1997) J Am Chem Soc 119:4900–4910

    Article  CAS  Google Scholar 

  11. Yoshikai N, Yamashita T, Nakamura E (2005) Angew Chem Int Ed 44:4721–4723

    Article  CAS  Google Scholar 

  12. Yoshikai N, Nakamura E (2012) Chem Rev 112:2339–2372

    Article  CAS  PubMed  Google Scholar 

  13. Magrez-Chiquet M, Morin MST, Wencel-Delord J, Drissi Amraoui S, Baslé O, Alexakis A, Crévisy C, Mauduit M (2013) Chem Eur J 19:13663–13667

    Article  CAS  PubMed  Google Scholar 

  14. Wencel-Delord J, Alexakis A, Crévisy C, Mauduit M (2010) Org Lett 12:4335–4337

    Article  CAS  PubMed  Google Scholar 

  15. Drissi-Amraoui S, Schmid TE, Lauberteaux J, Crévisy C, Baslé O, de Figueiredo RM, Halbert S, Gérard H, Mauduit M, Campagne JM (2016) Adv Synth Catal 358:2519–2540

    Article  CAS  Google Scholar 

  16. Blons C, Morin MST, Schmid TE, Vives T, Colombel-Rouen S, Baslé O, Reynaldo T, Covington CL, Halbert S, Cuskelly SN, Bernhardt PV, Williams CM, Crassous J, Polavarapu PL, Crévisy C, Gérard H, Mauduit M (2017) Chem Eur J 23:7515–7525

    Article  CAS  PubMed  Google Scholar 

  17. Halbert S, Lauberteaux J, Blons C, de Figueiredo RM, Crévisy C, Baslé O, Campagne JM, Mauduit M, Gérard H (2019) ChemCatChem 11:4108–4115

    Article  CAS  Google Scholar 

  18. Mori S, Nakamura E (2002). In: Krause N (ed) Modern organocopper chemistry. Wiley, New York

    Google Scholar 

  19. Bernaud F, Vrancken E, Mangeney P (2003) Org Lett 5:2567–2569

    Article  CAS  PubMed  Google Scholar 

  20. Alouan N, Bernaud F, Marrot J, Vrancken E, Mangeney P (2005) Org Lett 7:5797–5800

    Article  Google Scholar 

  21. Vrancken E, Alouane N, Gérard H, Mangeney P (2007) J Org Chem 72:1770–1779

    Article  CAS  PubMed  Google Scholar 

  22. Vrancken E, Gérard H, Linder D, Ouizem S, Alouane N, Roubineau E, Bentayeb K, Marrot J, Mangeney P (2011) J Am Chem Soc 133:10790–10802

    Article  CAS  PubMed  Google Scholar 

  23. Mongin F, Harrison-Marchand A (2013) Chem Rev 113:7563–7727

    Article  CAS  PubMed  Google Scholar 

  24. Larsson PF, Norrby PO, Woodward S (2014). In: Alexakis A, Krause N, Woodward S (eds) Copper-catalyzed asymmetric synthesis. Wiley, New York

    Google Scholar 

  25. Reich HJ, Thompson JL (2000) Org Lett 2:783–786

    Article  CAS  PubMed  Google Scholar 

  26. Vrancken E, Campagne JM, Mangeney P (2014). In: Molander GA, Knochel P (eds) Comprehensive organic synthesis, vol 1, 2nd edn. Elsevier, Oxford

    Google Scholar 

  27. Hajira A, Yoshikai N, Nakamura E (2006) Org Lett 18:4153–4155

    Article  Google Scholar 

  28. Park J (2012) Hong S 41(6931):6943z

    Google Scholar 

  29. delPozo J, Pérez-Iglesis M, Álvarez R, Lledós A, Casares JA, Espinet P (2017) ACS Catal 7(3575):3583

    Google Scholar 

  30. Gérard H, Chaquin P, Maddaluno J (2020) J Mol Model 26:59

    Article  PubMed  Google Scholar 

  31. Ben Maamer C, Mpawenayo P, Lecachey B, Alouane N, Mangeney P, van der Lee A, Marrot J, Bouaouli S, Guillaumont M, Besbes R, Gérard H, Vrancken E, Campagne JM (2021) Org Lett 23:6305–6310

    Article  CAS  PubMed  Google Scholar 

  32. Halbert S, Gérard H (2015) New J Chem 39:5410–5419

    Article  CAS  Google Scholar 

  33. Mangeney P, Gérard H, Vrancken E (2017) Synthesis 49:526–531

    CAS  Google Scholar 

  34. Abbotto A, Streiwieser A, von Ragué SP (1997) J Am Chem Soc 119:11255–11268

    Article  CAS  Google Scholar 

  35. Streitwieser A, Ze-Rong Wang D (1999) J Am Chem Soc 121:6213–6219

    Article  CAS  Google Scholar 

  36. Uhe A, Kozuch S, Shaik S (2011) J Comput Chem 32:978–985

    Article  CAS  PubMed  Google Scholar 

  37. Kozuch S (2012) WIREs Comput Mol Sci 2:795–815

    Article  CAS  Google Scholar 

  38. delPozo J, Gioria E, Casares JA, Álvarez R, Espinet P (2015) Organometallics 34:3120–3128

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai T, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski GVG, Voth A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 09, Revision D.01, Gaussian, Inc. Wallingford, CT

  40. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  41. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  42. Yi H, Yang D, Xin J, Qi X, Lan Y, Deng Y, Pao CW, Lee JF, Lei A (2017) Nat Com 8:14794

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  46. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  47. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Vrancken, J.-M. Campagne and M. Mauduit as well as their teams for experimental data and support.

Funding

The results presented here have been financed through the Agence Nationale de la Recherche grants AggregAte (ANR-07-BLAN-0294-01), Copenol (ANR-09-BLAN-0089) and SCATE (ANR 12-BS07-0009-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Gérard.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1045 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halbert, S., Gérard, H. Cu(I)-Assisted Addition of Li- or Zn-Organometallics to Carbonyl Compounds: Learning from Analogies and Differences Between Intermediates and Transition States. Top Catal 65, 481–492 (2022). https://doi.org/10.1007/s11244-021-01551-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01551-9

Keywords

Navigation