Skip to main content

Advertisement

Log in

Electrochemical Sensing of Anticancer Drug Using New Electrocatalytic Approach

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Cancer is one of the leading causes of death worldwide. It is very important to regulate drug doses for cancer patients in the treatment of cancer with drugs. Determination of drugs used as anticancer at low concentrations and determination of them with high sensitivity is of great importance for the follow-up of these drugs. Electrochemical techniques offer a wide variety of detection techniques that provide user-friendly, low-cost, and real-time monitoring compared to other conventional methods and provide low sensitivity and detection limits. By modifying the electrode surfaces with various materials, their sensitivity and detection limits can be increased. This review focuses on new electrocatalytic approaches and current developments for the electrochemical determination of anticancer drugs. In addition, anticancer drugs are classified in detail. Electrochemical sensors used in studies in recent years and verification parameters such as detection limit, linear dynamic range, sensitivity are given in tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AdSDPV:

Adsorptive stripping differential pulse voltammetry

Ag:

Silver

AgNCs:

Silver nanocubes

AuNPs:

Gold nanoparticles

CNTs:

Carbon nanotubes

CPE:

Carbon paste electrode

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

EIS:

Electrochemical impedance spectroscopy

FE-SEM:

Field emission scanning electron microscopy

FLU:

Flutamide

GC–MS:

Mass spectrometry–dependent gas chromatography

LC–MS:

Mass spectrometry–dependent liquid chromatography

LOD:

Limit of detection

MIP:

Molecularly imprinted polymer

MOFs:

Metal–organic frameworks

MoS2 :

Molybdenum disulfide

MWCNT:

Multi-walled carbon nanotube

NSCLC:

Non-small cell lung cancer

PGNR:

Porous graphene nanoribbon

SCLC:

Small cell lung cancer

SEM:

Scanning electron microscopy

SPCE:

Screen-printed carbon electrode

SWV:

Square wave voltammetry

SWCNT:

Single-walled carbon nanotube

ZnMn2O4-PGO:

ZnMn2O4 nanoparticles decorated porous reduced graphene oxide nanocomposite

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Arruebo M, Vilaboa N, Sáez-Gutierrez B et al (2011) Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 3:3279–3330. https://doi.org/10.3390/cancers3033279

    Article  CAS  Google Scholar 

  3. Ciftci O, Yilmaz KC, Karacaglar E et al (2019) The role of selvester score on 12-lead ECG in determination of left ventricular systolic dysfunction among patients receiving trastuzumab therapy. Eur J Ther 25:69–75. https://doi.org/10.5152/eurjther.2019.18061

    Article  Google Scholar 

  4. Ruiz EJ, Diefenbacher ME, Nelson JK et al (2019) LUBAC determines chemotherapy resistance in squamous cell lung cancer. J Exp Med 216:450–465. https://doi.org/10.1084/jem.20180742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Konno M, Mitsuzuka K, Yamada S et al (2019) A case of adult metastatic rhabdomyosarcoma of the prostate cured by long-term chemotherapy with local radiation. Urol Int 102:118–121. https://doi.org/10.1159/000473861

    Article  CAS  PubMed  Google Scholar 

  6. Hoehn RS, Smith JJ (2019) Adjuvant chemotherapy for colon cancer. Dis Colon Rectum 62:274–278. https://doi.org/10.1097/DCR.0000000000001328

    Article  PubMed  PubMed Central  Google Scholar 

  7. Connor TH, Smith JP (2016) New approaches to wipe sampling methods for antineoplastic and other hazardous drugs in healthcare settings. Pharm Technol Hosp Pharm 1:107–114. https://doi.org/10.1515/pthp-2016-0009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Florea A, Guo Z, Cristea C et al (2015) Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta 138:71–76. https://doi.org/10.1016/j.talanta.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  9. Cetinkaya A, Topal BD, Atici EB, Ozkan SA (2021) Simple and highly sensitive assay of axitinib in dosage form and biological samples and its electrochemical behavior on the boron-doped diamond and glassy carbon electrodes. Electrochim Acta. https://doi.org/10.1016/j.electacta.2021.138443

    Article  Google Scholar 

  10. Hajian R, Mehrayin Z, Mohagheghian M et al (2015) Fabrication of an electrochemical sensor based on carbon nanotubes modified with gold nanoparticles for determination of valrubicin as a chemotherapy drug: Valrubicin-DNA interaction. Mater Sci Eng C 49:769–775. https://doi.org/10.1016/j.msec.2015.01.072

    Article  CAS  Google Scholar 

  11. Radhapyari K, Kotoky P, Khan R (2013) Detection of anticancer drug tamoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase. Mater Sci Eng C 33:583–587. https://doi.org/10.1016/j.msec.2012.09.021

    Article  CAS  Google Scholar 

  12. Radhapyari K, Khan R (2015) Biosensor for detection of selective anticancer drug gemcitabine based on polyaniline-gold nanocomposite. Adv Mater Lett 6:13–18. https://doi.org/10.5185/amlett.2015.5607

    Article  CAS  Google Scholar 

  13. Mohamed MA, Fayed AS, Hegazy MA et al (2019) Fully optimized new sensitive electrochemical sensing platform for the selective determination of antiepileptic drug ezogabine. Microchem J 144:130–138. https://doi.org/10.1016/j.microc.2018.08.062

    Article  CAS  Google Scholar 

  14. Jiokeng SLZ, Tonle IK, Walcarius A (2019) Amino-attapulgite/mesoporous silica composite films generated by electro-assisted self-assembly for the voltammetric determination of diclofenac. Sens Actuators B 287:296–305. https://doi.org/10.1016/j.snb.2019.02.038

    Article  CAS  Google Scholar 

  15. Safaei M, Beitollahi H, Shishehbore MR (2019) Modified screen printed electrode for selective determination of folic acid. Acta Chim Slov 66:777–783. https://doi.org/10.17344/acsi.2018.4629

    Article  CAS  PubMed  Google Scholar 

  16. Ensafi AA, Talkhooncheh BM, Zandi-Atashbar N, Rezaei B (2020) Electrochemical sensing of flutamide contained in plasma and urine matrices using NiFe2O4/rGO nanocomposite, as an efficient and selective electrocatalyst. Electroanalysis 32:1717–1724. https://doi.org/10.1002/elan.202000048

    Article  CAS  Google Scholar 

  17. Mani V, Shanthi S, Peng TK et al (2019) Real-time quantification of hydrogen peroxide production in living cells using NiCo2S4@CoS2 heterostructure. Sens Actuators B 287:124–130. https://doi.org/10.1016/j.snb.2019.02.015

    Article  CAS  Google Scholar 

  18. Govindasamy M, Shanthi S, Elaiyappillai E et al (2019) Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim Acta 293:328–337. https://doi.org/10.1016/j.electacta.2018.10.051

    Article  CAS  Google Scholar 

  19. Govindasamy M, Wang SF, Pan WC et al (2019) Facile sonochemical synthesis of perovskite-type SrTiO3 nanocubes with reduced graphene oxide nanocatalyst for an enhanced electrochemical detection of α-amino acid (tryptophan). Ultrason Sonochem 56:193–199. https://doi.org/10.1016/j.ultsonch.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  20. Pollet BG (2020) The use of power ultrasound and sonochemistry for the production of energy materials. Ultrason Sonochem 64:104851. https://doi.org/10.1016/j.ultsonch.2019.104851

    Article  CAS  PubMed  Google Scholar 

  21. Cai J, Cao A, Huang J et al (2020) Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution. Appl Catal B 267:118378. https://doi.org/10.1016/j.apcatb.2019.118378

    Article  CAS  Google Scholar 

  22. Tian X, Lian S, Ji C et al (2019) Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3: Pr3+ red emitting phosphor. J Alloys Compd 784:628–640. https://doi.org/10.1016/j.jallcom.2019.01.087

    Article  CAS  Google Scholar 

  23. Pei J, Meng J, Wu S et al (2019) Hierarchical CaTiO3 nanowire-network architectures for H2 evolution under visible-light irradiation. J Alloys Compd 806:889–896. https://doi.org/10.1016/j.jallcom.2019.07.294

    Article  CAS  Google Scholar 

  24. Zhou X, Wang A, Yu C et al (2015) Facile synthesis of molecularly imprinted graphene quantum dots for the determination of dopamine with affinity-adjustable. ACS Appl Mater Interfaces 7:11741–11747. https://doi.org/10.1021/am5078478

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Mu L, Chen X et al (2017) Core-shell metal-organic frameworks/molecularly imprinted nanoparticles as absorbents for the detection of pyrraline in milk and milk powder. J Agric Food Chem 65:986–992. https://doi.org/10.1021/acs.jafc.6b05429

    Article  CAS  PubMed  Google Scholar 

  26. Guo T, Deng Q, Fang G et al (2016) Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein. Biosens Bioelectron 79:341–346. https://doi.org/10.1016/j.bios.2015.12.040

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Ni T, Mu L et al (2018) Sensitive detection of pyrraline with a molecularly imprinted sensor based on metal-organic frameworks and quantum dots. Sens Actuators B 256:1038–1044. https://doi.org/10.1016/j.snb.2017.10.048

    Article  CAS  Google Scholar 

  28. Bougrini M, Florea A, Cristea C et al (2016) Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey. Food Control 59:424–429. https://doi.org/10.1016/j.foodcont.2015.06.002

    Article  CAS  Google Scholar 

  29. Rawool CR, Srivastava AK (2019) A dual template imprinted polymer modified electrochemical sensor based on Cu metal organic framework/mesoporous carbon for highly sensitive and selective recognition of rifampicin and isoniazid. Sens Actuators B 288:493–506. https://doi.org/10.1016/j.snb.2019.03.032

    Article  CAS  Google Scholar 

  30. Karimi-Maleh H, Karimi F, Fu L et al (2022) Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127058

    Article  PubMed  Google Scholar 

  31. Karaman C, Karaman O, Yola BB et al (2021) A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticle-decorated porous graphene nanoribbon and Ag nanocube-incorporated MoS2 nanosheets. New J Chem 45:11222–11233. https://doi.org/10.1039/d1nj02293h

    Article  CAS  Google Scholar 

  32. Liang X, Wu P, Yang Q et al (2021) An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 220:113473. https://doi.org/10.1016/j.ejmech.2021.113473

    Article  CAS  PubMed  Google Scholar 

  33. Liang X, Yang Q, Wu P et al (2021) The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015–2020. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.105011

    Article  PubMed  Google Scholar 

  34. Espinosa E, Zamora P, Feliu J, González Barón M (2003) Classification of anticancer drugs—a new system based on therapeutic targets. Cancer Treat Rev 29:515–523. https://doi.org/10.1016/S0305-7372(03)00116-6

    Article  CAS  PubMed  Google Scholar 

  35. Sun J, Wei Q, Zhou Y et al (2017) A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol. https://doi.org/10.1186/s12918-017-0464-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Avendaño C, Menéndez JC (2015) General aspects of cancer chemotherapy. In: Medicinal chemistry of anticancer drugs, pp 1–22

  37. Kwok KK, Vincent EC, Gibson JN (2017) Antineoplastic drugs. In: pharmacology and therapeutics for dentistry, 7th ed. Elsevier, pp 530–562

  38. Katzung BG, Trevor AJ (2015) Basic & clinical pharmacology, 13th ed

  39. Henry JR, Mader MM (2004) Recent advances in antimetabolite cancer chemotherapies. In: Plattner JJ (ed) Annual reports in medicinal chemistry. Elsevier, pp 159–172

    Google Scholar 

  40. Hanekamp D, Ngai LL, Janssen JJWM et al (2021) Early assessment of clofarabine effectiveness based on measurable residual disease, including AML stem cells. Blood 137:1694–1697. https://doi.org/10.1182/blood.2020007150

    Article  CAS  PubMed  Google Scholar 

  41. Buie LW, Epstein SS, Lindley CM (2007) Nelarabine: a novel purine antimetabolite antineoplastic agent. Clin Ther 29:1887–1899. https://doi.org/10.1016/j.clinthera.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  42. Bardal SK, Waechter JE, Martin DS (2011) Neoplasia. In: Applied pharmacology. Saunders, pp 305–324

  43. Kuroda S, Kagawa S, Fujiwara T (2013) Selectively replicating oncolytic adenoviruses combined with chemotherapy, radiotherapy, or molecular targeted therapy for treatment of human cancers. In: Gene therapy of cancer: translational approaches from preclinical studies to clinical ımplementation, 3rd edn. Elsevier Inc, pp 171–183

  44. Cragg GM, Newman DJ (2010) Nature as source of medicines; novel drugs from nature; screening for antitumor activity. In: Comprehensive natural products II: Chemistry and biology, pp 135–175

  45. Moukharskaya J, Verschraegen C (2012) Topoisomerase 1 Inhibitors and Cancer Therapy. Hematol Oncol Clin North Am 26:507–525. https://doi.org/10.1016/j.hoc.2012.03.002

    Article  PubMed  Google Scholar 

  46. Mosca L, Ilari A, Fazi F et al (2021) Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat 54:100742. https://doi.org/10.1016/j.drup.2020.100742

    Article  PubMed  Google Scholar 

  47. Rodrigues-Ferreira S, Moindjie H, Haykal MM, Nahmias C (2021) Predicting and overcoming taxane chemoresistance. Trends Mol Med 27:138–151. https://doi.org/10.1016/j.molmed.2020.09.007

    Article  CAS  PubMed  Google Scholar 

  48. Tsuji W, Plock JA (2017) Breast cancer metastasis. Introd to Cancer Metastasis. https://doi.org/10.1016/B978-0-12-804003-4.00002-5

    Article  Google Scholar 

  49. Li T, Chen X, Wan J et al (2021) Akt ınhibition ımproves the efficacy of cabazitaxel nanomedicine in preclinical taxane-resistant cancer models. Int J Pharm 607:121017. https://doi.org/10.1016/j.ijpharm.2021.121017

    Article  CAS  PubMed  Google Scholar 

  50. González-Burgos E, Gómez-Serranillos MP (2021) Vinca alkaloids as chemotherapeutic agents against breast cancer. In: Discovery and development of anti-breast cancer agents from natural products. Elsevier Inc, pp 69–101

  51. Zhang Y, Yang SH, Guo XL (2017) New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed Pharmacother 96:659–666. https://doi.org/10.1016/j.biopha.2017.10.041

    Article  CAS  PubMed  Google Scholar 

  52. Bergstralh DT, Ting JPY (2006) Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev 32:166–179. https://doi.org/10.1016/j.ctrv.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  53. Cao DS, Jiang SL, Di GY et al (2020) A multi-scale systems pharmacology approach uncovers the anti-cancer molecular mechanism of Ixabepilone. Eur J Med Chem 199:112421. https://doi.org/10.1016/j.ejmech.2020.112421

    Article  CAS  PubMed  Google Scholar 

  54. Tanni KA, Truong CB, Johnson BS, Qian J (2021) Comparative effectiveness and safety of eribulin in advanced or metastatic breast cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol 163:103375. https://doi.org/10.1016/j.critrevonc.2021.103375

    Article  PubMed  Google Scholar 

  55. Furman BL (2017) Plicamycin. In: Reference module in biomedical sciences. Elsevier, pp 1–4

  56. Galm U, Hager MH, Van Lanen SG et al (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105:739–758. https://doi.org/10.1021/cr030117g

    Article  CAS  PubMed  Google Scholar 

  57. Lajous H, Lelièvre B, Vauléon E et al (2019) Rethinking alkylating(-like) agents for solid tumor management. Trends Pharmacol Sci 40:342–357. https://doi.org/10.1016/j.tips.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  58. Marosi C (2012) Complications of chemotherapy in neuro-oncology. In: Handbook of clinical neurology, 1st ed. Elsevier B.V, pp 873–885

  59. Karami F, Ranjbar S, Ghasemi Y, Negahdaripour M (2019) Analytical methodologies for determination of methotrexate and its metabolites in pharmaceutical, biological and environmental samples. J Pharm Anal 9:373–391. https://doi.org/10.1016/j.jpha.2019.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  60. Safaei M, Shishehbore MR (2021) A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 229:122247. https://doi.org/10.1016/j.talanta.2021.122247

    Article  CAS  PubMed  Google Scholar 

  61. Bharath G, Naldoni A, Ramsait KH et al (2016) Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors. J Mater Chem A 4:6385–6394. https://doi.org/10.1039/C6TA01528J

    Article  CAS  Google Scholar 

  62. Kubendhiran S, Sakthivel R, Chen SM et al (2019) A novel design and synthesis of ruthenium sulfide decorated activated graphite nanocomposite for the electrochemical determination of antipsychotic drug chlorpromazine. Composites B 168:282–290. https://doi.org/10.1016/j.compositesb.2018.12.082

    Article  CAS  Google Scholar 

  63. Saravanan R, Khan MM, Gupta VK et al (2015) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651. https://doi.org/10.1039/c5ra02557e

    Article  CAS  Google Scholar 

  64. Khorshed AA, Khairy M, Elsafty SA, Banks CE (2019) Disposable screen-printed electrodes modified with uniform iron oxide nanocubes for the simple electrochemical determination of meclizine, an antihistamine drug. Anal Methods 11:282–287. https://doi.org/10.1039/c8ay02405g

    Article  CAS  Google Scholar 

  65. Shahzad S, Karadurmus L, Dogan-Topal B et al (2020) Sensitive nucleic acid detection at NH2-MWCNTs modified glassy carbon electrode and its application for monitoring of gemcitabine-DNA interaction. Electroanalysis 32:912–922. https://doi.org/10.1002/elan.201900597

    Article  CAS  Google Scholar 

  66. Sener CE, Dogan Topal B, Ozkan SA (2020) Effect of monomer structure of anionic surfactant on voltammetric signals of an anticancer drug: rapid, simple, and sensitive electroanalysis of nilotinib in biological samples. Anal Bioanal Chem 412:8073–8081. https://doi.org/10.1007/s00216-020-02934-9

    Article  CAS  PubMed  Google Scholar 

  67. Dehdashtian S, Behbahanian N, Taherzadeh KM (2018) An ultrasensitive electrochemical sensor for direct determination of anticancer drug dacarbazine based on multiwall carbon nanotube-modified carbon paste electrode and application in pharmaceutical sample. J Iran Chem Soc 15:931–941. https://doi.org/10.1007/s13738-018-1291-5

    Article  CAS  Google Scholar 

  68. Shams A, Yari A (2019) A new sensor consisting of Ag-MWCNT nanocomposite as the sensing element for electrochemical determination of Epirubicin. Sens Actuators B 286:131–138. https://doi.org/10.1016/j.snb.2019.01.128

    Article  CAS  Google Scholar 

  69. Karadas-Bakirhan N, Patris S, Ozkan SA et al (2016) Determination of the anticancer drug sorafenib in serum by adsorptive stripping differential pulse voltammetry using a chitosan/multiwall carbon nanotube modified glassy carbon electrode. Electroanalysis 28:358–365. https://doi.org/10.1002/elan.201500384

    Article  CAS  Google Scholar 

  70. Kalambate PK, Li Y, Shen Y, Huang Y (2019) Mesoporous Pd@Pt core-shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: application in simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib. Anal Methods 11:443–453. https://doi.org/10.1039/c8ay02381f

    Article  CAS  Google Scholar 

  71. Findik M, Bingol H, Erdem A (2021) Electrochemical detection of interaction between daunorubicin and DNA by hybrid nanoflowers modified graphite electrodes. Sens Actuators B 329:129120. https://doi.org/10.1016/j.snb.2020.129120

    Article  CAS  Google Scholar 

  72. Najari S, Bagheri H, Monsef-Khoshhesab Z et al (2018) Electrochemical sensor based on gold nanoparticle-multiwall carbon nanotube nanocomposite for the sensitive determination of docetaxel as an anticancer drug. Ionics (Kiel) 24:3209–3219. https://doi.org/10.1007/s11581-018-2517-3

    Article  CAS  Google Scholar 

  73. Hasanzadeh M, Hashemzadeh N, Shadjou N, Eivazi-ziaei J (2016) Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J Mol Liq 221:354–357. https://doi.org/10.1016/j.molliq.2016.05.082

    Article  CAS  Google Scholar 

  74. Bakirhan NK, Tok TT, Ozkan SA (2019) The redox mechanism investigation of non-small cell lung cancer drug: erlotinib via theoretical and experimental techniques and its host–guest detection by Β-Cyclodextrin nanoparticles modified glassy carbon electrode. Sensors Actuators B 278:172–180. https://doi.org/10.1016/j.snb.2018.09.090

    Article  CAS  Google Scholar 

  75. Hatamluyi B, Lorestani F, Es’haghi Z (2018) Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide. Biosens Bioelectron 120:22–29. https://doi.org/10.1016/j.bios.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  76. Muthusankar G, Devi RK, Gopu G (2020) Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: an efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosens Bioelectron 150:111947. https://doi.org/10.1016/j.bios.2019.111947

    Article  CAS  PubMed  Google Scholar 

  77. Mehrabi A, Rahimnejad M, Mohammadi M, Pourali M (2019) Electrochemical detection of flutamide with gold electrode as an anticancer drug. Biocatal Agric Biotechnol 22:101375. https://doi.org/10.1016/j.bcab.2019.101375

    Article  Google Scholar 

  78. Haghshenas M, Mazloum-Ardakani M, Alizadeh Z et al (2020) A sensing platform using Ag/Pt core-shell nanostructures supported on multiwalled carbon nanotubes to detect hydroxyurea. Electroanalysis 32:2137–2145. https://doi.org/10.1002/ELAN.202060020

    Article  CAS  Google Scholar 

  79. Azam TM, Abbas M, Masoud TM, Maryam M (2017) Voltammetric determination of the anticancer drug hydroxyurea using a carbon paste electrode ıncorporating TiO2 nanoparticles. Anal Bioanal Electrochem 9:117–125

    Google Scholar 

  80. Kaya SI, Kurbanoglu S, Yavuz E et al (2020) Carbon-based ruthenium nanomaterial-based electroanalytical sensors for the detection of anticancer drug Idarubicin. Sci Rep. https://doi.org/10.1038/s41598-020-68055-6

    Article  PubMed  PubMed Central  Google Scholar 

  81. Temerk Y, Ibrahim M, Ibrahim H, Kotb M (2016) Adsorptive stripping voltammetric determination of anticancer drug lomustine in biological fluids using in situ mercury film coated graphite pencil electrode. J Electroanal Chem 760:135–142. https://doi.org/10.1016/j.jelechem.2015.11.026

    Article  CAS  Google Scholar 

  82. Salandari-Jolge N, Ensafi AA, Rezaei B (2020) A novel three-dimensional network of CuCr2O4/CuO nanofibers for voltammetric determination of anticancer drug methotrexate. Anal Bioanal Chem 412:2443–2453. https://doi.org/10.1007/s00216-020-02461-7

    Article  CAS  PubMed  Google Scholar 

  83. Saljooqi A, Shamspur T, Mostafavi A (2019) The MWCNT-Ag-PT GCE electrochemical sensor functionalized with dsDNA for mitoxantrone sensing in biological media. IEEE Sens J 19:4364–4368. https://doi.org/10.1109/JSEN.2019.2897375

    Article  CAS  Google Scholar 

  84. Kuralay F, Dükar N (2020) Polypyrrole-based nanohybrid electrodes: their preparation and potential use for DNA recognition and paclitaxel quantification. ChemistrySelect 5:4708–4714. https://doi.org/10.1002/slct.201904253

    Article  CAS  Google Scholar 

  85. Ozcelikay G, Karadas-Bakirhan N, Taskin-Tok T, Ozkan SA (2020) A selective and molecular imaging approach for anticancer drug: pemetrexed by nanoparticle accelerated molecularly imprinting polymer. Electrochim Acta 354:136665. https://doi.org/10.1016/j.electacta.2020.136665

    Article  CAS  Google Scholar 

  86. Shafaei S, Hosseinzadeh E, Kanberoglu GS et al (2021) Preparation of cerium oxide–MWCNTs nanocomposite bulk modified carbon ceramic electrode: a sensitive sensor for tamoxifen determination in human serum samples. J Mater Sci Mater Electron 32:14601–14609. https://doi.org/10.1007/s10854-021-06019-w

    Article  CAS  Google Scholar 

  87. Niazazari K, Pahlavan A, Karimi-Maleh H, Fouladi AA (2020) Synthesis of Pt-SWCNTs conductive nanocomposite by microwave heated polyol strategy; application for amplification of 5-fluorouracil anticancer drug electrochemical sensor. Anal Bioanal Electrochem 12:959–969

    CAS  Google Scholar 

  88. Abbar JC, Shetti NP, Nandibewoor ST (2016) Development of voltammetric method for the determination of an anticancer drug, 5-flurouracil, at a multiwalled carbon nanotubes paste electrode. Synth React Inorganic Met Nano-Metal Chem 46:814–820. https://doi.org/10.1080/15533174.2014.989586

    Article  CAS  Google Scholar 

  89. Venkatesh K, Muthukutty B, Chen SM et al (2021) Nanomolar level detection of non-steroidal antiandrogen drug flutamide based on ZnMn2O4 nanoparticles decorated porous reduced graphene oxide nanocomposite electrode. J Hazard Mater 405:124096. https://doi.org/10.1016/j.jhazmat.2020.124096

    Article  CAS  PubMed  Google Scholar 

  90. Kesavan G, Chen SM (2021) Highly sensitive manganese oxide/hexagonal boron nitride nanocomposite: an efficient electrocatalyst for the detection of anti-cancer drug flutamide. Microchem J 163:105906. https://doi.org/10.1016/j.microc.2020.105906

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ahmet Cetinkaya thanks the financial supports from the Council of Higher Education 100/2000 (YOK) under the special 100/2000 and the Scientific and Technological Research Council of Turkey (TÜBITAK) under the BIDEB/2211-A Ph.D. Scholarship Programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel A. Ozkan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetinkaya, A., Karadurmus, L., Kaya, S.I. et al. Electrochemical Sensing of Anticancer Drug Using New Electrocatalytic Approach. Top Catal 65, 703–715 (2022). https://doi.org/10.1007/s11244-021-01536-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01536-8

Keywords

Navigation