Skip to main content
Log in

Classifying Intermetallic Tetragonal Phase of All-d-Metal Heusler Alloys for Catalysis Applications

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Heusler alloy is an intermetallic alloy that is applied in various applications due to its combinatorial tunability in high throughput screening. Recently, this intermetallic structure has also emerged as a potential candidate for heterogeneous catalysis applications. While Heusler compounds can exist in two crystal phases, cubic and tetragonal, it has been observed that the catalytic activity is enhanced in the tetragonal phase for several catalysis reactions due to the ordering effect and symmetry breaking, prompting a need to understand the factors responsible for the preferred phase of Heusler alloys. In this work, we use simple descriptors, namely, spin moment and occupancy of d-electrons, to predict the stable (tetragonal vs. cubic) phase of all-d-metal Heusler alloys. The classification accuracy of the proposed descriptors using a support vector machine is shown to be 86%. We further find that 66% of the all-d-metal Heusler alloys have scaling relations between the d-electron occupancy and spin moments due to a pseudogap, which would allow the evaluation of the descriptors without costly density functional calculations. We expect that the present phase classification model can potentially reduce the computational cost for the high throughput screening of Heusler compounds in various catalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cava R, Takagi H, Batlogg B, Zandbergen H, Krajewski J, Peck W, Van Dover R, Felder R, Siegrist T, Mizuhashi K (1994) Superconductivity at 23 K in yttrium palladium boride carbide. Nature 367(6459):146–148

    Article  CAS  Google Scholar 

  2. Chang G, Xu S-Y, Zheng H, Singh B, Hsu C-H, Bian G, Alidoust N, Belopolski I, Sanchez DS, Zhang S (2016) Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co 2 TiX (X= Si, Ge, or Sn). Sci Rep 6(1):1–9

    Article  CAS  Google Scholar 

  3. Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T (2015) Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun 6(1):1–7

    Article  CAS  Google Scholar 

  4. Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S (2017) Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv 3(4):e1602241

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pang Tsai A, Kameoka S, Ishii Y (2004) PdZn= Cu: Can an intermetallic compound replace an element? J Phys Soc Jpn 73(12):3270–3273

    Article  Google Scholar 

  6. Furukawa S, Komatsu T (2017) Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal 7(1):735–765

    Article  CAS  Google Scholar 

  7. Kojima T, Kameoka S, Fujii S, Ueda S, Tsai A-P (2018) Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: a new potential for old materials. Sci Adv 4(10):eaat6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu M, Li G, Fu C, Liu E, Manna K, Budiyanto E, Yang Q, Felser C, Tüysüz H (2020) Tunable eg orbital occupancy in Heusler compounds for oxygen evolution reaction. Angew Chem 133(11):5864–5869

    Article  Google Scholar 

  9. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3(7):546–550

    Article  CAS  PubMed  Google Scholar 

  10. Zhu J, Yang Y, Chen L, Xiao W, Liu H, HcD A, Wang D (2018) Copper-induced formation of structurally ordered Pt–Fe–Cu ternary intermetallic electrocatalysts with tunable phase structure and improved stability. Chem Mater 30(17):5987–5995

    Article  CAS  Google Scholar 

  11. Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li WX, Bao J (2020) Surface Iron Species in Palladium-Iron Intermetallic Nanocrystals that Promote and Stabilize CO2 Methanation. Angew Chem Inter Ed 59(34):14434–14442

    Article  CAS  Google Scholar 

  12. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruña HD (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12(1):81–87

    Article  CAS  PubMed  Google Scholar 

  13. Yu D, Gao L, Sun T, Guo J, Yuan Y, Zhang J, Li M, Li X, Liu M, Ma C (2021) Strain-Stabilized Metastable Face-Centered Tetragonal Gold Overlayer for Efficient CO2 Electroreduction. Nano Lett 21(2):1003–1010

    Article  CAS  PubMed  Google Scholar 

  14. Faleev SV, Ferrante Y, Jeong J, Samant MG, Jones B, Parkin SS (2017) Origin of the tetragonal ground state of Heusler compounds. Phys Rev Appl 7(3):034022

    Article  Google Scholar 

  15. Skriver HL (1985) Crystal structure from one-electron theory. Phys Rev B 31(4):1909

    Article  CAS  Google Scholar 

  16. Guo S, Ng C, Lu J, Liu C (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109(10):103505

    Article  Google Scholar 

  17. Söderlind P, Ahuja R, Eriksson O, Wills J, Johansson B (1994) Crystal structure and elastic-constant anomalies in the magnetic 3d transition metals. Phys Rev B 50(9):5918

    Article  Google Scholar 

  18. Jin T, Ji HS, Lee YJ, Kim JY, Kwon S, Lee C, Shim JH (2018) Descriptor-based crystal structure prediction of magnetic transition metals: Orbital-spin occupancy rule. AIP Adv 8(6):065020

    Article  Google Scholar 

  19. Husain S, Akansel S, Kumar A, Svedlindh P, Chaudhary S (2016) Growth of Co 2 FeAl Heusler alloy thin films on Si (100) having very small Gilbert damping by Ion beam sputtering. Sci Rep 6(1):1–11

    Article  Google Scholar 

  20. Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher GH, Jenkins CA, Casper F (2012) Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv Mater 24(47):6283–6287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suits J (1976) Structural instability in new magnetic Heusler compounds. Solid State Commun 18(3):423–425

    Article  CAS  Google Scholar 

  22. Muldawer L (1966) X-ray Study of Ternary Ordering of the Noble Metals in AgAuZn2 and CuAuZn2. J Appl Phys 37(5):2062–2066

    Article  CAS  Google Scholar 

  23. Han Y, Wu M, Feng Y, Cheng Z, Lin T, Yang T, Khenata R, Wang X (2019) Competition between cubic and tetragonal phases in all-d-metal Heusler alloys, X2− xMn1+ xV (X= Pd, Ni, Pt, Ag, Au, Ir, Co; x= 1, 0): a new potential direction of the Heusler family. IUCrJ 6(3):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei Z, Liu E, Chen J, Li Y, Liu G, Luo H, Xi X, Zhang H, Wang W, Wu G (2015) Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases. Appl Phys Lett 107(2):022406

    Article  Google Scholar 

  25. Curtarolo S, Setyawan W, Hart GL, Jahnatek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O (2012) AFLOW: An automatic framework for high-throughput materials discovery. Comp Mater Sci 58:218–226

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  28. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  30. MATLAB and Statistics and Machine Learning Toolbox Release (2018), The MathWorks, Inc., Natick, Massachusetts, United states. https://www.mathworks.com/solutions/machine-learning.html?s_tid=srchtitle

  31. Kohavi R (1995) Proceedings of the fourteenth international joint conference on artificial intelligence. Morgan Kaufmann, San Mateo, 2:1137.

  32. Music D, Takahashi T, Vitos L, Asker C, Abrikosov IA, Schneider JM (2007) Elastic properties of Fe–Mn random alloys studied by ab initio calculations. Appl Phys Lett 91(19):191904

    Article  Google Scholar 

  33. Özdoğan K, Maznichenko IV, Ostanin S, Şaşıoğlu E, Ernst A, Mertig I, Galanakis I (2019) High spin polarization in all-3d-metallic Heusler compounds: the case of Fe2CrZ and Co2CrZ (Z= Sc, Ti, V). J Phys D 52(20):205003

    Article  Google Scholar 

  34. Sahariah MB, Ghosh S, Singh CS, Gowtham S, Pandey R (2013) First-principles computation of structural, elastic and magnetic properties of Ni2FeGa across the martensitic transformation. J Phys 25(2):1025502

    Google Scholar 

  35. Vishina A, Vekilova OY, Björkman T, Bergman A, Herper HC, Eriksson O (2020) High-throughput and data-mining approach to predict new rare-earth free permanent magnets. Phys Rev B 101(9):094407

    Article  CAS  Google Scholar 

  36. Akriche A, Bouafia H, Hiadsi S, Abidri B, Sahli B, Elchikh M, Timaoui M, Djebour B (2017) First-principles study of mechanical, exchange interactions and the robustness in Co2MnSi full Heusler compounds. J Magn Magn Mater 422:13–19

    Article  CAS  Google Scholar 

  37. Zhang X, Xu G, Du Y, Liu E, Liu Z, Liu G, Wang W, Wu G (2013) Phase stability, magnetism and generalized electron-filling rule of vanadium-based inverse Heusler compounds. EPL (Europhys Lett) 104(2):27012

    Article  Google Scholar 

  38. Zhang X, Hou Z, Wang Y, Xu G, Shi C, Liu E, Xi X, Wang W, Wu G, Zhang X-x (2016) NMR evidence for the topologically nontrivial nature in a family of half-Heusler compounds. Sci Rep 6(1):1–7

    Google Scholar 

  39. Wang X, Cheng Z, Liu G, Dai X, Khenata R, Wang L, Bouhemadou A (2017) Rare earth-based quaternary Heusler compounds MCoVZ (M= Lu, Y; Z= Si, Ge) with tunable band characteristics for potential spintronic applications. IUCrJ 4(6):758–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiang G, Ingo O, Hongbin Z (2019) High-throughput screening of spin-gapless semiconductors in quaternary Heusler compounds. Phys Rev Mater 3:024410

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge generous financial support from Saudi Aramco-KAIST CO2 Management Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousung Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, T., Jung, Y. Classifying Intermetallic Tetragonal Phase of All-d-Metal Heusler Alloys for Catalysis Applications. Top Catal 65, 208–214 (2022). https://doi.org/10.1007/s11244-021-01515-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01515-z

Navigation