Skip to main content
Log in

Understanding of Co(I)-Catalyzed Hydrogenation of C=C and C=O Substrates

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The first-row transition metal catalysis often serves as a complementary strategy to traditional precious metal catalysis. Other than their advantages in abundance and sustainability, their unique electronic properties often give rise to more complicated reactivities. Co-catalyzed hydrogenation is an example of these relatively underexplored first-row transition metal catalysis. In this work, we will focus on an example of Co-catalyzed hydrogenation, which was reported to be able to selectively hydrogenate C=C but not C=O. We have performed DFT calculations on the model reactions, accompanied by a series of structure and bonding analysis, to investigate the underlying reason for the observed selectivity. We have identified the predominant σ-donating nature of phosphine and the π-accepting nature of C=C/C=O fragments upon interaction with Co(I) center, and we have also analyzed why these differences would lead to different coordination geometry, stability, and reactivity. We anticipate that all these analyses would advance our understanding in Co(I) catalysis and are beneficial for future Co-based catalyst design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang H, Wen J, Zhang X (2021) Chiral tridentate ligands in transition metal-catalyzed asymmetric hydrogenation. Chem Rev. https://doi.org/10.1021/acs.chemrev.1c00075

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morris RH (2015) Exploiting metal–ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts. Acc Chem Res 48(5):1494–1502. https://doi.org/10.1021/acs.accounts.5b00045

    Article  CAS  PubMed  Google Scholar 

  3. Cammarota RC, Lu CC (2015) Tuning nickel with Lewis acidic group 13 metalloligands for catalytic olefin hydrogenation. J Am Chem Soc 137(39):12486–12489. https://doi.org/10.1021/jacs.5b08313

    Article  CAS  PubMed  Google Scholar 

  4. Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, Ludwig R, Junge K, Beller M (2016) Selective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexes. J Am Chem Soc 138(28):8809–8814. https://doi.org/10.1021/jacs.6b03709

    Article  CAS  PubMed  Google Scholar 

  5. Friedfeld MR, Zhong H, Ruck RT, Shevlin M, Chirik PJ (2018) Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science 360(6391):888–893. https://doi.org/10.1126/science.aar6117

    Article  CAS  PubMed  Google Scholar 

  6. Wen J, Wang F, Zhang X (2021) Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem Soc Rev 50(5):3211–3237. https://doi.org/10.1039/D0CS00082E

    Article  CAS  PubMed  Google Scholar 

  7. Du X, Xiao Y, Yang Y, Duan Y-N, Li F, Hu Q, Chung LW, Chen G-Q, Zhang X (2021) Enantioselective hydrogenation of tetrasubstituted α,β-unsaturated carboxylic acids enabled by cobalt(II) catalysis: scope and mechanistic insights. Angew Chem Int Ed 60(20):11384–11390. https://doi.org/10.1002/anie.202016705

    Article  CAS  Google Scholar 

  8. Alawisi H, Arman HD, Tonzetich ZJ (2021) Catalytic hydrogenation of alkenes and alkynes by a cobalt pincer complex: evidence of roles for both Co(I) and Co(II). Organometallics 40(8):1062–1070. https://doi.org/10.1021/acs.organomet.1c00053

    Article  CAS  Google Scholar 

  9. Kamei Y, Seino Y, Yamaguchi Y, Yoshino T, Maeda S, Kojima M, Matsunaga S (2021) Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nat Commun 12(1):966. https://doi.org/10.1038/s41467-020-20872-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Junge K, Papa V, Beller M (2019) Cobalt-pincer complexes in catalysis. Chem Eur J 25:122–143. https://doi.org/10.1002/chem.201803016

    Article  CAS  PubMed  Google Scholar 

  11. Knijnenburg Q, Horton AD, van der Heijden H, Kooistra TM, Hetterscheid DGH, Smits JMM, de Bruin B, Budzelaar PHM, Gal AW (2005) Olefin hydrogenation using diimine pyridine complexes of Co and Rh. J Mol Catal A Chem 232:151–159. https://doi.org/10.1016/j.molcata.2004.12.039

    Article  CAS  Google Scholar 

  12. Hopmann KH (2013) Cobalt–bis(imino)pyridine-catalyzed asymmetric hydrogenation: electronic structure, mechanism, and stereoselectivity. Organometallics 32:6388–6399. https://doi.org/10.1021/om400755k

    Article  CAS  Google Scholar 

  13. Friedfeld MR, Shevlin M, Margulieux GW, Campeau LC, Chirik PJ (2016) Cobalt-catalyzed enantioselective hydrogenation of minimally functionalized alkenes: isotopic labeling provides insight into the origin of stereoselectivity and alkene insertion preferences. J Am Chem Soc 138:3314–3324. https://doi.org/10.1021/jacs.5b10148

    Article  CAS  PubMed  Google Scholar 

  14. Zhang G, Scott BL, Hanson SK (2012) Mild and homogeneous cobalt-catalyzed hydrogenation of C=C, C=O, and C=N bonds. Angew Chem Int Ed 51(48):12102–12106. https://doi.org/10.1002/anie.201206051

    Article  CAS  Google Scholar 

  15. Rösler S, Obenauf J, Kempe R (2015) A Highly active and easily accessible cobalt catalyst for selective hydrogenation of C=O bonds. J Am Chem Soc 137(25):7998–8001. https://doi.org/10.1021/jacs.5b04349

    Article  CAS  PubMed  Google Scholar 

  16. Tokmic K, Markus CR, Zhu L, Fout AR (2016) Well-defined cobalt(I) dihydrogen catalyst: experimental evidence for a Co(I)/Co(III) redox process in olefin hydrogenation. J Am Chem Soc 138(36):11907–11913. https://doi.org/10.1021/jacs.6b07066

    Article  CAS  PubMed  Google Scholar 

  17. Zuo Z, Yang X (2021) Mechanistic insights into selective hydrogenation of C=C bonds catalyzed by CCC cobalt pincer complexes: a DFT study. Catalysts 11(2):168. https://doi.org/10.3390/catal11020168

    Article  CAS  Google Scholar 

  18. Zhang J-X, Sheong FK, Lin Z (2018) Unravelling chemical interactions with principal interacting orbital analysis. Chem Eur J 24(38):9639–9650. https://doi.org/10.1002/chem.201801220

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J-X, Sheong FK, Lin Z (2020) Principal interacting orbital: a chemically intuitive method for deciphering bonding interaction. WIREs Comput Mol Sci 10(6):e1469. https://doi.org/10.1002/wcms.1469

    Article  CAS  Google Scholar 

  20. Jing Y, Chen X, Yang X (2015) Computational mechanistic study of the hydrogenation and dehydrogenation reactions catalyzed by cobalt pincer complexes. Organometallics 34(24):5716–5722. https://doi.org/10.1021/acs.organomet.5b00798

    Article  CAS  Google Scholar 

  21. Zhang G, Vasudevan KV, Scott BL, Hanson SK (2013) Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions. J Am Chem Soc 135(23):8668–8681. https://doi.org/10.1021/ja402679a

    Article  CAS  PubMed  Google Scholar 

  22. Lam KC, Lam WH, Lin Z, Marder TB, Norman NC (2004) Structural analysis of five-coordinate transition metal boryl complexes with different d-electron configurations. Inorg Chem 43(8):2541–2547. https://doi.org/10.1021/ic035248e

    Article  CAS  PubMed  Google Scholar 

  23. Clot E, Eisenstein O, Crabtree RH (2001) How hydrogen bonding affects ligand binding and fluxionality in transition metal complexes: a DFT study on interligand hydrogen bonds involving HF and H2O. New J Chem 25(1):66–72. https://doi.org/10.1039/B006829M

    Article  CAS  Google Scholar 

  24. Van der Sluys LS, Eckert J, Eisenstein O, Hall JH, Huffman JC, Jackson SA, Koetzle TF, Kubas GJ, Vergamini PJ, Caulton KG (1990) An attractive cis-effect of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)2(η-2-H2)(PEtPh2)3. J Am Chem Soc 112(12):4831–4841. https://doi.org/10.1021/ja00168a030

    Article  Google Scholar 

  25. Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  26. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  27. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  28. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  29. Petersson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J Chem Phys 94(9):6081–6090. https://doi.org/10.1063/1.460447

    Article  CAS  Google Scholar 

  30. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J Chem Phys 89(4):2193–2218. https://doi.org/10.1063/1.455064

    Article  CAS  Google Scholar 

  31. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14(12):363–368. https://doi.org/10.1021/ar00072a001

    Article  CAS  Google Scholar 

  32. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  33. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34(16):1429–1437. https://doi.org/10.1002/jcc.23266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Grants Council of Hong Kong (HKUST 16305119 and 16300620). The authors thank Miss Xueying Guo for her help on preparing the manuscript, Dr. Jing-Xuan Zhang and Dr. Zhihan Zhang (alumni of the Lin group in HKUST) for their valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu Kit Sheong or Zhenyang Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1789.8 kb)

Supplementary material 2 (XYZ 498.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Sheong, F.K. & Lin, Z. Understanding of Co(I)-Catalyzed Hydrogenation of C=C and C=O Substrates. Top Catal 65, 472–480 (2022). https://doi.org/10.1007/s11244-021-01481-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01481-6

Keywords

Navigation